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Preface

This is a book about immunoinformatics and its developing role in the compu-
tational prediction of immunogenicity. Immunogenicity is the ability to induce
a specific immune response when a pathogen is exposed to initial surveil-
lance by the immune system. Immunoinformatics is, as well seen time and
time again, the application of informatics techniques drawn from computer
science to molecules of the immune system and their interactions. In recent
years, immunoinformatics has grown significantly in scientific stature and
ready applicability and is now able to contribute in a genuine manner to all
kinds of problems in immunology, not least the prediction of immunogenicity.
The practical utility of such approaches in the discovery and development of
vaccines is a question which remains open for many, but for those able to grasp
and capitalize on its potential, immunoinformatics is set to become a tool of
incomparable value. This book is thus a primer for those keen to come to grips
with this emerging technology. Albeit not pretending to be completely compre-
hensive, Immunoinformatics: Predicting Immunogenicity In Silico nonetheless
sets out to sample the major areas in immunoinformatics. It seeks to equip
the reader with a grasp of where the field is and where it is going. Hopefully,
it will both engage the reader and provide a sound background for the use
of immunoinformatics in immunology and vaccinology. As high-throughput
systems biology begins to gather speed and threatens to sweep all before it, the
future of biological science, of which immunology is such a profound part, will
rightly belong to those able to combine seamlessly the experimental and the
theoretical aspects of bioscience, merging without effort or obvious disconti-
nuity the skill sets of the lab-based and the computer-based science professional.
It may take some time for the full ascendancy of this dynamic hybrid to properly
assert itself, but the day will come when both the atavistic, pipette-wielding
Luddite in the white coat and the socially inept, geeky, nerdy weirdo staring
into the computer screen will become stereotypes as outmoded and redundant as
the most extinct of Dodos. As a community, science should engage this change
as wholeheartedly as it can. Such an eventuality can be avoided but only for so
long. So begin by reading this Immunoinformatics: Predicting Immunogenicity
In Silico: garner its wisdom should you find some, savour its gems, gather up
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vi Preface

its insight, and forgive its foibles, its inconsistencies, its shortcomings, and its
many omissions, yet above all learn from it and even try to enjoy it.

I wish to thank all the authors for their worthy contributions to the book.
It goes without saying that without the chapters that they contributed the
book would not exist. Having said that, the quality that their work evinces
is nonetheless outstanding. I should also like to thank Prof. John Walker,
Editor-in-Chief of the Methods in Molecular Biology series, whose help and
encouragement has been steadfast and has greatly eased the passage from
inception to publication. Likewise, my thanks go to all the staff at Humana for
their inestimable contributions in administration and book production, which
have complemented marvelously the work of all the authors. Though I am
deeply indebted to all contributors for all their help and advice, I must take on
myself blame for any mistakes and omissions you find herein.

Finally, some local thanks. In particular, I should also like to thank
members of my research group for helping to make all this possible: Dr. Irini
Doytchinova, Valerie Walshe, Martin Blythe, Christianna Zygouri, Debra
Clayton (née Taylor), Shelley Hemsley, Christopher Toseland, Kelly Paine,
Dr. Pingping Guan, Dr. Paul Taylor, Dr. Helen McSparron, Dr. Matthew
N. Davies, Dr. Channa Hattotuwagama, and Dr. Shunzhou Wan. I should also
like to thank other staff members for their help and for stimulating discussions:
Prof. Peter Beverley, Dr. Persephone Borrow, Dr. Shirley Ellis, Dr. Simon
Wong, Dr. Helen Bodmer, Dr. Sam Hou, Dr. Lisa Hyland, Dr. David Tough,
Dr. Elma Tchillian, and Dr. Josef Walker. I should also like to thank my
colleagues and co-workers at the EJIVR and the Institute for Animal Health
(IAH), Compton for their close and supportive collaboration. Finally, I thank
a number of others: Prof. Terri Attwood, Prof. Peter Coveney, Prof. Vladimir
Brusic, and Dr. Anne DeGroot.

Darren R. Flower
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Stefan Stevanović • Department of Immunology, Institute for Cell Biology,

University of Tübingen, Tübingen, Germany
Myong-Hee Sung • Laboratory of Receptor Biology and Gene Expression,

Staff Scientist National Cancer Institute, Bethesda, MD
Joo Chuan Tong • Department of Biochemistry, National University

of Singapore, Singapore, and Institute for Infocomm Research, Singapore
Grish C. Varshney • Institute of Microbial Technology, Chandigarh, India
Ji Wan • Department of Neuroscience, University of Minnesota, Minneapolis,

MN
Shunzhou Wan • Centre for Computational Science, Chemistry

Department, University College of London, London, UK
David A. Winkler • Centre for Complexity in Drug Discovery, CSIRO

Molecular and Health Technologies, Clayton, Australia
Yingdong Zhao • National Cancer Institute, National Institutes of Health,

Rockville, MD



Color Plates

Color plates follow p. 32.

Color Plate 1 IMGT Collier de Perles of a V-DOMAIN. The IMGT Collier
de Perles of V-DOMAIN is based on the IMGT unique
numbering for V-DOMAIN and V-LIKE-DOMAIN (10).
(Chapter 2, Fig. 1; see full caption on p. 25 and discussion
on p. 24.)

Color Plate 2 Three-dimensional structures and IMGT Collier de Perles
of a V-DOMAIN, a C-DOMAIN and G-DOMAINs.
(Chapter 2, Fig. 2; see full caption on p. 27 and discussion
on p. 24.)

Color Plate 3 IMGT pMHC contact sites of human HLA-A*0201 MHC-I
and a 9-amino acid peptide side chains (IMGT/3Dstructure-
DB: 1im3). (Chapter 2, Fig. 4; see full caption on p. 36 and
discussion on p. 35.)

Color Plate 4 IMGT pMHC contact sites of human HLA-DRA*0101 and
HLA-DRB5*0101 MHC-II and the peptide side chains
(9 amino acids located in the groove) (IMGT/3Dstructure-
DB: 1fv1). (Chapter 2, Fig. 5; see full caption on p. 37 and
discussion on p. 35.)

xv



1

Immunoinformatics and the In Silico Prediction
of Immunogenicity
An Introduction

Darren R. Flower

Summary

Immunoinformatics is the application of informatics techniques to molecules of the immune
system. One of its principal goals is the effective prediction of immunogenicity, be that at the
level of epitope, subunit vaccine, or attenuated pathogen. Immunogenicity is the ability of a
pathogen or component thereof to induce a specific immune response when first exposed to
surveillance by the immune system, whereas antigenicity is the capacity for recognition by the
extant machinery of the adaptive immune response in a recall response. In thisbook, we introduce
these subjects and explore the current state of play in immunoinformatics and the in silico
prediction of immunogenicity.

Key Words: Antigen presentation; bioinformatics; computational chemistry; computational
vaccinology; immunoinformatics; MHC binding; vaccine design

1. Introduction
Immunology is important because the domain of infectious disease is the

domain of immunology. For immunology is, amongst many other studies, the
study of how the body is able to defend itself against infection; from the stand-
point of human disease, an accurate appreciation of adaptive and, increasingly,
innate immunity is unequivocally fundamental to our continuing assault on
contagious disease, the greatest source of preventable human mortality and
morbidity. Its societal importance is unquestionable, for immunology deals with
the physiological function of the immune system in both health and disease.

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
Edited by: D. R. Flower © Humana Press Inc., Totowa, NJ
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2 Flower

Our knowledge concerning the varied molecular and cellular mechanisms that
underlie the macroscopic manifestation of immunity at the level of the whole
organism has facilitated and fomented the development of new clinical and
non-clinical technologies. Likewise, the inexorable move towards automation
and high-throughput science is having an important effect on immunology:
after a 100 years of empirical research, immunology is hovering on the brink
of reinventing itself as a quantitative, genome-based science. Immunology is
thus poised at a turning point in its long and distinguished history, whether or
not the multitude of practitioners of immunology wish to acknowledge it. Like
most biological sciences, immunology needs to make the most of the poten-
tially overwhelming cascade of new information delivered by high-throughput
technologies.

As much of its focus is strongly anthrocentric, being centered primarily
on the adaptive immune system of vertebrates, immunology is rightly viewed
as an important—even a paramount—science. Immunologists are sometimes
viewed—rightly perhaps—as a discipline apart. Immunology has a high
standing in the wider scientific community: its journals have high-impact
factors and it is a large and, generally speaking, a well-funded discipline.
Thus, the realm of immunology is indeed broad, encompassing, as it does, the
malfunctioning of immunity in immunological disorders, including autoimmune
diseases, allograph rejection, and immune deficiency, as well as the in vivo, in
vitro, and in situ, physico-chemical and functional properties of immunological
components of the immune system.

Although the use of computers to combat infection and other disease states
may seem far-fetched to some, computational approaches have nonetheless long
been used to design small-molecule drugs, with all the implications for human
health that they entail. We are now beginning to see the way in which the use
of computers is also impacting on the discovery of immunotherapeutics and
prophylactic vaccines.

The synergy of the in silico and in vitro is made manifest through the disci-
pline of immunoinformatics. Immunoinformatics, a profound new branch of
computational science that has the potential to greatly accelerate the celerity
and effectiveness of the search for new immunotherapeutics, has recently
emerged as a buoyant subdiscipline within bioinformatics. Immunoinformatics
is thus the application of bioinformatic methods to the unique problems of
immunology and vaccinology. Immunoinformatics, as a principal component
of incipient immunomic technologies, is also beginning to catalyse key alter-
ations in the way that immunology is done. Immunology is finally coming to
grips with the egregious implications of the post-genomic revolution and has
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begun to release itself from the empirical straight jacket that has constrained
its development hitherto. It is clear that such high-throughput approaches will
engender a paradigm shift from hypothesis to data-driven research, with new
understanding emerging from the analysis of data sets which initially seem both
complicated and confusing.

In response to such pressures, there has been much interest recently in
the effective deployment of informatics tools, which can analyze data arising
from immunological research. In turn, this has caused two kinds of immuno-
logical computer support to grow. The first is straightforward bioinformatics
support that is technically indistinguishable from support for other areas of
biology; this includes, for example, the annotation of both human and microbial
genomes. The other type of support is the more focussed and specialized
strand of immunoinformatics. It is a discipline firmly grounded in computer
science, but one that increasingly integrates a whole range of interdisci-
plinary techniques from physical biochemistry, biophysics, computational and
medicinal and analytical chemistry, structural biology and protein homology
modeling, as well as many others. The principal task hitherto of this exciting
and dynamic specialism has been the accurate prediction of immunogenicity,
be that manifest as the identification of epitopes or the prediction of whole
protein immunogens. This endeavor is the focus of this book.

It is a well-known truism that the immune system is both complex and
hierarchical, exhibiting startling emergent behavior at all levels. The complexity
exhibited by the immune systems is undoubtedly confounding, and, although
there are many who deny it, our ignorance of fundamental immunology remains
unexpectedly profound. Yet, at its heart there lie straightforward and unequiv-
ocally explicable molecular recognition events: the coming together of two or
more molecules to form stable complexes of measurable duration. The binding
of an epitope to a major histocompatibility complex (MHC) protein, or T-cell
receptor (TCR) to a peptide–MHC complex, is in terms of underlying physico-
chemical phenomena, identical to any other molecular interaction in any other
area of biological science. It is only at higher levels—when thousands or
millions of different molecules work synergistically together—that the immune
system displays, in space and time, emergent properties. Immunogenicity is
such an emergent property.

In seeking to address the prediction of immunogenicity, immunoinformatics
exploits the observation that immunogenicity is, ultimately, based on simple
and understandable molecular events. Immunogenicity is the property of a
molecular, or supramolecular, moiety that allows it to induce a significant
response from the immune system. Here a molecular moiety may be a protein,
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lipid, carbohydrate, or some combination thereof. A supramolecular moiety
may be a virus, bacteria, or protozoan parasite. An immunogen—a moiety
exhibiting immunogenicity—is a substance which can elicit a specific immune
response, whereas an antigen—a moiety exhibiting antigenicity—is a substance
recognized, in a recall response, by the extant machinery of the adaptive immune
response, such as T cells or antibodies. Thus, antigenicity is the capacity,
exhibited by an antigen, for recognition by one or several parts of the antibody or
TCR immune repertoire. Immunogenicity, on the other hand, is the ability of an
immunogen to induce a specific immune response when it is exposed to initial
surveillance by the immune system. These two properties are clearly coupled,
but properly understanding how they are interrelated is by no means facile.

Predicting actual antigenicity and/or immunogenicity of a complex protein
remains problematic. It depends simultaneously upon the context in which it is
presented and the nature of the immune repertoire that recognizes it. Either or
both of these components may be critical. For example, the immune response
in many immunogens or antigens is focussed on a handful of immunodom-
inant structures, while much of the rest of the molecule may be unable to
mount a response. In seeking to assess immunogenicity, we must consider
properties of the host and the pathogenic organism of origin, and not just
the intrinsic properties of the antigen itself. The composition of the available
immune repertoire will affect its response to a given epitope and alter its
recognition of a particular target. When mounting a response in vivo, those
elements of an immune repertoire capable of participating, in a given response,
might have been deleted through their cross-reactivity with host antigens.
Moreover, fundamental restrictions on the antibody repertoire, for example, as
imposed by the limited number of genes that encode the antigen-binding site
of the antibody, may also curtail possible responses. Overall, it is clear that
antigenicity and immunogenicity have many interlinked causes. The induction
of immune responses requires critical interaction between innate parts of the
immune system, which respond rapidly and in a relatively non-specific manner,
and other, more specific, components, which recognize individual epitopes.

In order to protect the host against infectious disease, the immune system
must recognize a variety of microbial pathogens (bacteria, fungi, parasites,
and viruses), principally through the recognition of biological macromolecules,
typically whole, or degraded, proteins. However, epitopes do not need to be
proteinacious; carbohydrates, lipid, and even nucleic acid can act as an epitope,
either alone or in combination with peptide. Glycosylation, as a particular kind
of posttranslational modification, is a common event that contributes to protein
immunogenicity, whether mediated through humoral or cellular immunity.
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Glycosylated peptide epitopes can be bound by antibodies and can be presented
by both class I or class II MHC molecules and then be bound by glycopeptide-
specific T-cell clones. Thus, immunogenicity can, in general, manifest itself
through both arms of the adaptive immune response: humoral (mediated
through the binding of whole protein antigens by antibodies) and cellular
immunology (mediated by the recognition of proteolytically cleaved peptides by
T cells).

Humoral immunogenicity, as mediated by soluble or membrane-bound cell-
surface antibodies, can be measured in several ways. Methods such as enzyme-
linked immunosorbent assay (ELISA) or competitive inhibition assays yield
values for the antibody titer, the concentration at which the ability of antibodies
in the blood to bind an antigen has reached its half maximal value. One can also
measure directly the affinity of antibody and antigen, using, say, equilibrium
dialysis. Measurements of cellular immunity have become legion. For class I
presentation, arguably the most direct approach is to measure T-cell killing.
Cytotoxic T lymphocytes (CTLs) can lyse target cells. This can be measured
using a chromium radioisotope, which is taken up by target cells and released
during lysis. For class II presentation, the proliferative response of CD4+ T
cells, which, in turn, activates macrophages or B cells, is measurable through
tritiated thymidine incorporation into T-cell DNA. One can also measure
cytokine production by class I and/or class II T cells. Recently, attention has
moved towards tetramers as tools for the detection of T-cell responses (1).

Much of immunogenicity is determined by the presence of epitopes, the
principal chemical moieties recognized by the immune system. Consequently,
the accurate prediction of B-cell and T-cell epitopes is the pivotal challenge for
immunoinformatics. Epitope prediction can be fairly described as both the high
frontier of immunoinformatic investigation and a grand scientific challenge: it
is difficult, yet exciting, and, as a central tool in the drive to develop improved
vaccines and diagnostics, is also of true practical value.

Despite a growing appreciation of the role played by non-peptide epitopes,
such as carbohydrates and lipids, peptidic B-cell and T-cell epitopes (as
mediated by the humoral or cellular immune systems, respectively) remain the
principal tools by which the intricacy of immune responses can be surveyed and
manipulated, as it is the recognition of epitopes by T cells, B cells, and soluble
antibodies that lies at the heart of the adaptive immune response. Such initial
responses lead, in turn, to the activation of the cellular and humoral immune
systems and, ultimately, to the effective destruction of pathogenic organisms.

The word epitope is widely used amongst biological scientists. Etymolog-
ically speaking, its roots are Greek, and, like most words, its meanings are
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diverse and in a state of constant flux. It is most often used to refer to any region
of a biomacromolecule which is recognized, or bound, by another biomacro-
molecule. For an immunologist, the meaning is more restricted and refers
to particular structures recognized by the immune system in particular ways.
B cell epitopes are regions of a protein recognized by antibody molecules.
T-cell epitopes are short peptides which are bound by MHCs and subsequently
recognized by T cells.

The region on a macromolecule, which undertakes the recognition of an
epitope, is called a paratope. In terms of the physical chemistry of binding,
then we need think only of equal partners in a binding reaction. However,
viewed within the context of protein and organismal function, itself strictly
a teleonomic, or even anthropomorphic, construct of limited explicit veracity,
then the distinction between epitope and paratope, with all its intentionality of
meaning, gains some epistemological authenticity, albeit more operational than
actual.

A B-cell epitope is a region of a protein, or other biomacromolecule, recog-
nized by soluble or membrane-bound antibodies. B-cell epitopes are classified
as either linear or discontinuous epitopes. Linear epitopes comprise a single
continuous stretch of amino acids within a protein sequence, whereas an
epitope whose residues are distantly separated in the sequence and are brought
into physical proximity by protein folding is called a discontinuous epitope.
Although most epitopes are, in all likelihood, discontinuous, experimental
epitope detection has focussed on linear epitopes. Linear epitopes are believed
to be able to elicit antibodies that can subsequently cross-react with its parent
protein. Chapter 29 addresses the prediction of B-cell epitopes.

A T-cell epitope is a short peptide bound, in turn, by MHC and TCR, to
form a ternary complex. The formation of such a complex is the primary, but
not sole, molecular recognition event in the activation of T cells. Many other
co-receptors and accessory molecules, in addition to CD4 and CD8 molecules,
are also involved in T-cell recognition. The recognition process is not simple
and remains poorly understood. However, it has emerged that the process
involves the creation of the immunological synapse, a highly organized, spatio-
temporal arrangement of receptors and accessory molecules of many types. The
involvement of these accessory molecules, although essential, is not properly
understood, at least from a quantitative perspective. Ultimately, the accurate
modeling of all these complex processes will be required to gain full and
complete insight into the process of epitope presentation.

While the accurate and reliable prediction of B-cell epitopes remains at an
early stage, a large number of sophisticated, and successful, methods for the
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prediction of T-cell epitopes have been developed. These began with early
motif methods and have grown to exploit both qualitative and semiquantitative
approaches, typified by neural network classification methods and a variety
of more quantitative approaches. Most modern methods for T-cell-epitope
prediction rely on predicting the affinity of peptides binding to MHCs.

As everyone knows, MHCs bind peptides. These are themselves derived
through the degradation, by proteolytic enzymes, of foreign or self-proteins.
Foreign epitopes originate from benign or pathogenic microbes, such as viruses
and bacteria. Self-epitopes originate from host proteins that find their way into
the degradation pathway as part of the cell’s intrinsic quality control proce-
dures. The proteolytic pathway by which peptides become available to MHCs
is very complex and many important details and components remain to be
elucidated. Yet, it is the complexity of the T-cell presentation pathway that
allows peptides with diverse posttranslational modifications, such as phospho-
rylation or glycosylation, to form peptide-MHC complexes (pMHC), and thus,
ultimately, to be recognized by TCRs. Moreover, MHCs are very catholic in
terms of the molecules they bind and are not restricted to peptides. Chemically
modified peptides and peptidomimetics are also bound by MHCs. It is also
well known that many drug-like molecules bind to MHCs (2).

There are several alternative processing pathways, but the principal ones
seem linked to the two major types of MHC: class I and class II. Class I
MHCs are expressed by almost all cells in the body. They are recognized by
T cells whose surfaces are rich in CD8 co-receptor protein. Class II MHCs
are only expressed on so-called professional antigen-presenting cells and are
recognized by T cells whose surfaces are rich in CD4 co-receptors. MHCs
are polymorphic. Generally, most humans have six classic MHCs—3 class
I [human leukocyte antigen (HLA)-A, HLA-B, and HLA-C] and 3 class II
(HLA-DR, HLA-DP, and HLA-DQ); these proteins will have different
sequences, or different HLA alleles, in different individuals. Different MHC
alleles, both class I and class II, have different peptide specificities. A
simple way to look at this phenomenon is to say that MHCs bind peptides
that exhibit certain particular sequence patterns and not others. Within the
human population, there are a large number of different, possible variant,
genes coding for MHC proteins, each exhibiting different peptide-binding
sequence selectivities. TCRs, in their turn, also exhibit different and typically
weaker affinities for different peptide–MHC complexes. The combination of
MHC and TCR selectivities thus determines the power of peptide recog-
nition in the immune system and thus the recognition of foreign proteins and
pathogens. This will be discussed more thoroughly in accompanying chapters.
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Whatever dyed-in-the-wool immunologists may say, such interactions form the
quintessential nucleus of immune recognition, and thus the principal point of
intervention by immunotherapeutics.

The peptides presented by class I and class II MHCs differ principally in
terms of their length. Class I peptides are primarily derived from intracellular
proteins, such as viruses. These proteins are targeted to the proteasome, which
cuts them into short peptides. Subsidiary enzymes also cleave these peptides,
producing a range of peptide lengths, of which the distribution used to be believed
to fall neatly into the range 8–11 amino acids. More recently, however, this
has been shown that much longer peptides, currently up to 15 amino acids,
can also be bound by MHCs and recognized by TCRs (3). For class II, the
receptor-mediated intake of extracellular protein derived from a pathogen is
targeted to an endosomal compartment, where such proteins are cleaved by
cathepsins, a particular class of protease, to produce peptides that are typically
somewhat longer than class I. These, again, exhibit a considerable distribution of
lengths, centered on a range of 15–20 amino acids. However, longer and shorter
peptides can also be presented, through class II MHCs, to immune surveillance.

There are many other aspects of immunogenicity which have yet to
be properly explored experimentally. Although the anecdotal evidence is
suggestive, it is not yet easily amendable to predictive methods. However,
simple observations, for example that the larger and more chemically complex
a protein and the more distant its sequence is from those of self-proteins the
more likely it is to be immunogenic, seem almost self-evident. While the obser-
vation that particulate or aggregated protein is more likely to evoke a response
does not afford so obvious an explanation. Other factors, such as the affinity of
antigens for the apparatus of the endocytic pathway, while clearly germane to
the issue of immunogenicity, are as yet poorly understood, if at all. Moreover,
an understanding of the pathogen as well as the host is important. While it
is clear that bacterial pathogens have developed successfully many inventive
ways to attack the human host, it is also clear that many seemingly diverse
pathogens share virulence traits. Aspects of this are addressed in Chapter 31.
Properties of microbial protein, including those independent of the host, such as
subcellular location and expression levels, are also important. Immunogenicity
is neither a property conferred solely by the host nor solely by the pathogen,
but one that arises from a synergistic combination of both. Thus, ultimately, we
will need to address the problem using a holistic, integrative approach, drawing
inference from a variety of sources ranging from the molecular through to the
fully organismal.
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It is now generally accepted that only peptides that bind to MHC at an affinity
above a certain threshold will act as T-cell epitopes and that, to some extent
at least, peptide affinity for the MHC correlates with T-cell response. This
particular issue is somewhat complicated and obscured by hearsay and dogma:
as with many questions important to immunoinformatics, the key, systematic
studies remain to be done. Deprecating counterexamples, the behavior of hetero-
clitic peptides, where synthetic enhancements to binding affinity are often
reflected in enhanced T-cell reactivity, seems compelling evidence. However,
and whatever people may say, affinity of binding is an important component
of recognition and of the overall immune response, not only, or, necessarily,
the most important part, but an essential component. Its importance is debated,
particularly by people who are vocal in their criticism of the immunoinfor-
matic endeavor. Nevertheless, its utility is clear. Experimental immunologists
and vaccinologists are constantly using nascent immunoinformatic approaches
to select, filter, or prune candidate peptides in order to identify functional
epitopes.

Many questions relating to immunogenicity remain decidedly open. What
underlying molecular mechanisms give rise to immunogenicity? For cellular
immunology, is it, as many believe, the lifetime—the off rate essentially—
of the MHC–peptide complex that determines how immunogenic an epitope
is? Or is it, as many continue to assume, the affinity of peptide for MHC?
Or is immunogenicty related to the total population of peptide-bound MHCs
on the surface of an antigen-presenting cell? Or is it some combination of
these phenomena leading, say, to an appropriate duration of the immuno-
logical synapse? However, it is vital to emphasize once more that immuno-
genicity is not an isolated function of peptide binding to MHC molecules, but
a phenomenon that arises from an organism recognizing a variety of signals,
of which recognition of a particular bound peptide is just one. Peptide binding
is a necessary, but not sufficient, condition for immunogenicity.

For some time, the database has been the lingua franca or, more prosaically,
the common language of bioinformatics. Although the specific dialect—the
type of data archived—may change, the use, the creation, and the manipulation
of databases, which contain biologically relevant information, are the most
critical feature of contemporary bioinformatics. The same is broadly true also
of immunoinformatics. This is manifest through its support for post-genomic
bioscience and as a discipline in its own right. Functional data, as housed in
databases, will rapidly become the principal currency in the dynamic infor-
mation economy of twenty-first century immunology. Having said all that,
there is nothing particularly new about immunological databases, at least in the
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sense that they do no more than apply standard data warehousing techniques
in an immunological context. Nonetheless, the continuing development of an
expanding variety of immunoinformatic database systems indicates that the
application of bioinformatics to immunology is beginning to broaden and
mature.

For example, the IMGT initiative (described in Chapters 2, 3, and 4) has
made the sequence analysis of important immunological macromolecules its
focus for many years. Functional, or epitope-orientated, databases are somewhat
newer, but their provenance is now well established. Generally speaking, such
databases record data on T-cell epitopes or peptide–MHC binding affinity.
Some would say that the best database available currently is the HIV Molecular
Immunology database (4), which focuses on the properties of a single virus.
The scope of the database is, in terms of the kinds of data it archives, broader
than many, with information on both cellular (T-cell epitopes and MHC-binding
motifs) and humoral immunology (linear and conformational B-cell epitopes).
Another widely used database is SYFPEITHI (described in Chapter 5), a
high-quality development, which contains an up-to-date compendium of T-cell
epitopes. SYFPEITHI also contains much data on MHC peptide ligands,
peptides isolated from cell-surface MHC proteins ex vivo, but excludes data
on synthetic peptide ’binders’.

MHCPEP (5), a now defunct database, pooled both T-cell epitope and
MHC-binding data in a flat file, introducing a widely used conceptual simplifi-
cation, which combines together the bewildering variety of binding measures,
reclassifying peptides as either ’binders’ or ’non-binders’. Binders are further
subdivided as high binders, medium binders, and low binders. More recently,
Brusic and coworkers have developed a much more complex and sophisticated
database: FIMM (6). This system integrates a variety of data on MHC–peptide
interactions: in addition to T-cell epitopes and MHC-peptide binding data, it
also archives a wide variety of other data, including sequence data on MHCs
themselves together with data on the disease associations of particular MHC
alleles.

Databases have begun to diversify and now address a wider and more varied
tranche of immunological data. AntiJen, formerly known as JenPep (7,8,9), is a
database developed recently, which brings together a variety of kinetic, thermo-
dynamic, functional, and cellular data within immunobiology. While it retains a
focus on both T-cell and B-cell epitopes, AntiJen is the first functional database
in immunology to contain continuous quantitative binding data on a variety
of immunological molecular interactions, rather than the kind of subjective
classifications described above. Data archived includes thermodynamic and
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kinetic measures of peptide binding to transporter associated with antigen
processing (TAP) and MHC, peptide–MHC complex binding to TCRs, and
general immunological protein–protein interactions, such as the interaction of
co-receptors and interactions with superantigens. Although the nature of the
data within AntiJen sets it apart from other immunology databases, there is,
nonetheless, considerable overlap between other systems and our database.
In Chapters 6, 7, and 8, databases originating in Raghava’s group address
three areas: cellular immunology (MHCBN, Chapter 6), B-cell-mediated
immunology (BCIPEP, Chapter 7), and small-molecule Haptens (HAPTENDB,
Chapter 8). Clearly, the ability of all these databases, each with its own
particular focus, properly to address the increasing needs of present-day
immunoinformaticians is greatest when they are combined synergistically.

Polymorphism confounds effective study of MHC-mediated peptide speci-
ficity. Indeed, and for a number of diverse reasons, HLA is the best and most
extensively studied of all human proteins with regard to polymorphism. As
perusal of Chapter 3 will ably demonstrate the IMGT/HLA database stores
literally thousands of distinct HLA class I and class II allele sequences. Such
allelic variants have come into being through a process of random mutation,
albeit filtered and constrained by evolutionary processes operating with an
environment characterized by morbid host–pathogen interactions, themselves
constrained by time and geography. Because MHCs exhibit such extensive
polymorphic amino acid variation, small alterations in the identity of binding
site residues should give rise to differences in peptide selectivity exhibited
during peptide binding. Many HLA alleles have been demonstrated to bind
peptides with a similar specificity. This has led to the concept of MHC super-
types and the idea that sequence distinct MHCs can be clustered or grouped into
distinct classes that exhibit equivalent, if not necessarily identical, peptide speci-
ficities. The pace and verity of vaccine discovery would be greatly enhanced
if one could delineate effective rules able to group together HLA alleles with
similar specificities. Such a classification, if accurate and sufficiently extensive,
would greatly reduce experimental work as it would no longer be necessary
to study every allele, thus making the discovery of epitope-based vaccines
targeted at multiple alleles more efficient. Some have sought insights into MHC
supertypes from a sequence perspective, others from structural data. A number
of such approaches are discussed in Chapters 9, 10, 11, and 12.

A useful simplification of biological computation is to divide methods
between the areas of simulation and data mining, although, in truth, there is a
continuous spectrum of techniques stretching from one extreme to the other.
In the minds of many, data mining is synonymous with text mining: the
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unsupervised extraction of data and information directly from the bioscience
literature. The distinction between data and information is an important one.
Data may include the sequences of peptides or numerical values, such as an
IC50. These can be identified readily on the basis of case or the unequivocal
association of an unambiguous symbol with a fixed-format number. Infor-
mation, on the other hand, is highly context dependent and might include things
as elusive as the unwritten implications of an observation or set of observations.

Within immunology, the principal example of data mining has, over the
years, been the identification of peptide-binding motifs, which seeks to charac-
terize the peptide specificity of different MHC alleles in terms of dominant
anchor positions with a strong preference for certain amino acids (10). Because
such motifs are simple to understand and simple to implement either visually or
computationally, they have enjoyed considerable popularity amongst immunol-
ogists. Human class I allele HLA-A*0201, probably the best-studied allele, has
anchor residues at peptide positions P2 and P9. At P2, acceptable amino acids
would be L and M, and V and L at position P9. Secondary anchors, which are
residues that are favorable, but not essential, for binding, may also be present.
A vast tranche of papers have, over the last 15 years, successfully extended
the list of known motifs to include the specificity patterns of numerous alleles,
from humans, mice, and many other animals. However, despite such apparent
success, there are still many fundamental problems associated with the motif
approach to the characterization of peptide specificity. The most significant of
these problems is that the method is deterministic: a peptide either is or is not
a binder. A brief reading of the literature however shows that motif matches
produce many false positives and probably also produces many false negatives,
although predicted non-binders are seldom, if ever, assayed. Thus being motif-
positive, as the jargon sometimes puts it, is neither necessary nor sufficient for
a peptide to possess MHC affinity. Although it is clear that so-called primary
anchors do often dominate binding, we have shown unequivocally that binding
motifs as descriptions of the process, are fundamentally flawed. Not hopeless,
not useless, but incomplete, partial, and inadequate for purpose. In the sense
that motifs are widely used and widely understood, they are indeed most useful,
but as accurate predictors of binding they leave much to be desired.

Shortcomings in motifs have led many to seek alternative data-mining
solutions to the peptide–MHC affinity problem. The development of data-driven
predictive methods in immunoinformatics is now several decades old. Early
methods attempted to predict epitopes directly, and in the absence of knowledge
of the peptide preferences of MHC restriction, were not very successful (11).
Several groups have used techniques from artificial intelligence research, such
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as artificial neural networks (ANNs) and hidden Markov models (HMMs),
to tackle the problem of predicting peptide–MHC affinity. ANNs and HMMs
are, for most applications and for most bioinformaticians, techniques of choice
for building predictive models. The successful application of ANNs is often
complicated by the presence of several adjustable, and impenetrable, factors:
over-fitting, over-training (or memorization), and interpretation. While over-
fitting and over-training have been largely overcome, interpretation remains
essentially intractable. Of course, many other methods—indeed, in all proba-
bility, all methods—suffer similar or equivalent problems. Over-fitting is the
curse of all data-driven methods. Support vector machines (SVM) are currently
flavor-of-the-month, while we used Partial Least Squares (PLS) as its principal
statistical inference engine. Whether either of these—or, indeed, any other
method of which we can conceive—will ever escape the traps which have
caught-out other techniques remains to be seen.

Section 3 details a whole variety of different cutting-edge approaches to
the problem of predicting MHC binding and thus, ultimately, the prediction
of immunogenicity. Chapters 13 through 16 describe general and/or well-
established methods for the prediction of MHC–peptide binding. Later chapters,
17 through 20, discuss some more up-to-date approaches, including SVM, and
SVM-based regressions approaches. Chapters 21 and 22 look at how structural
modeling can be used to look at peptide binding, while Chapters 23 and 24
concentrate in more detail on the use of molecular dynamic simulations to
address this problem. Finally, Chapters 25, 26, and 27 look at the more complex
data mining problems associated with data-driven approaches to predicting the
binding affinity of class II peptide–MHC interactions.

Currently, in vitro and in vivo testing is required to differentiate high-binding
peptides from true epitopes. Sets of MHC binders identified by prediction
methods can then be evaluated experimentally as potential epitopes. This will
reduce the required experiment burden by several orders of magnitude: the
alternative—assaying overlapping peptides from, say, each of the 4000 genes
in a bacterial genome—equates to the experimental evaluation of literally tens
of thousands of potential peptides. To evaluate the immunogenicity of these
using hand assays would be prohibitively inefficient. Even if this could be done
using high-throughput technology, the associated time and cost would still be
excessive.

We have come to a turning point, where a number of technologies have
obtained the necessary level of maturity: post-genomic strategies on the one
hand and predictive computational methods on the other. Progress will occur in
two ways. One will involve closer connections between immunoinformaticians
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and experimentalists seeking to discover new vaccines. In such a situation, work
would progress through a cyclical process of using and refining models and
experiments, at each stage moving closer towards a common goal of effective,
cost-efficient vaccine development. The other way is the devolved model, where
methods are made accessible and accessible remotely via the web.

There is also a clear and obvious need for experimental work to be conducted
in support of the development of accurate in silico methods. Our ability to
combine in vitro and in silico analysis allows us to improve both the scope and
power of our predictions, in a way that would be impossible using only data
from the literature. To ensure we produce useful, quality in silico models, rather
than worthless and unusable methods, we need to value the prediction generated
by immunoinformatics for themselves and conduct experiments appropriately.

Immunoinformatics is developing at an unprecedented pace, with many
groups trying to improve databases and algorithms. There has also been a
diversification in what is being done, as there always is as a new field grows
and expands and matures. In this context, Section 4 addresses some different
approaches to the prediction of characteristics germane to the complex and
subtle property of immunogenicity. Chapter 28 looks at binding to TAP,
an important checkpoint on the class I antigen-presentation pathway, while
Chapter 29 looks at the prediction of B-cell epitopes. Chapter30 looks at the
medically important area of histocompatibility prediction, and Chapter 31 looks
at the prediction of bacterial virulence.

Despite the steady increase in studies reporting the real-world use of
prediction algorithms, there remains a lingering feeling that truly convincing
validations of the underlying approach are still required. In time, this will come,
but only incrementally. Yet, we should feel confident that the great synergy
arising from these disciplines will be of true benefit to immunology, with
clear improvements in vaccine candidates, diagnostics, and laboratory reagents.
Methods able to accurately predict immunogenicity will yet become pivotal
tools for tomorrow’s vaccinologist. Yet, for these improved methodologies to
be ultimately effective, they must be used routinely by experimental immunolo-
gists. To do this requires two things. First, more and better algorithms and more
user-friendly software are required. In spite of their increasing accuracy and
reliability, most of these tools remain daunting for laboratory-based immunolo-
gists. This must be addressed. Second, it requires the confidence of experimen-
talists to exploit the methodology and to commit laboratory experimentation.
The use of these methods should be routine. It is not only a matter of training and
education, however. These methods must, ultimately, be made more accessible
and robust. But equally well, experimentalists cannot hide behind arguments
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about usability forever, they must engage fully and completely with advancing
technology. Hopefully, this book will encourage them to do so.
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IMGT®, the International ImmunoGeneTics Information
System® for Immunoinformatics

Methods for Querying IMGT® Databases, Tools, and Web
Resources in the Context of Immunoinformatics

Marie-Paule Lefranc

Summary

IMGT ®, the international ImMunoGeneTics information system® (http://imgt.cines.fr), was
created in 1989 by the Laboratoire d’ImmunoGénétique Moléculaire (LIGM) (Université
Montpellier II and CNRS) at Montpellier, France, in order to standardize and manage the
complexity of immunogenetics data. IMGT ® is recognized as the international reference
in immunogenetics and immunoinformatics. IMGT ® is a high quality integrated knowledge
resource, specialized in (i) the immunoglobulin (IG), T cell receptors (TR), major histocom-
patibility complex (MHC) of human and other vertebrates; (ii) proteins that belong to the
immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF); and (iii) related
proteins of the immune systems (RPI) of any species. IMGT ® provides a common access to
standardized data from genome, proteome, genetics, and three-dimensional (3D) structures for
the IG, TR, MHC, IgSF, MhcSF, and RPI. IMGT ® interactive on-line tools are provided for
genome, sequence, and 3D structure analysis. IMGT ® Web resources comprise 8,000 HTML
pages of synthesis and knowledge (IMGT Scientific chart, IMGT Repertoire, IMGT Education,
etc.) and external links (IMGT Bloc-notes and IMGT other accesses).

Key Words: IMGT; ontology; immunoglobulin; T cell receptor; MHC; IgSF; MhcSF

1. Introduction
The number of genomics, genetics, three-dimensional (3D), and functional

data published in the immunogenetics field is growing exponentially and
involves fundamental, clinical, veterinary, and pharmaceutical research. The

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
Edited by: D. R. Flower © Humana Press Inc., Totowa, NJ

19



20 Lefranc

number of potential protein forms of the antigen receptors, immunoglobulins
(IG), and T cell receptors (TR) is almost unlimited. The potential reper-
toire of each individual is estimated to comprise about 1012 different IG (or
antibodies) and TR, and the limiting factor is only the number of B and
T cells that an organism is genetically programmed to produce. This huge
diversity is inherent to the particularly complex and unique molecular synthesis
and genetics of the antigen receptor chains. This includes biological mecha-
nisms such as DNA molecular rearrangements in multiple loci (three for
IG and four for TR in humans) located on different chromosomes (four in
humans), nucleotide deletions and insertions at the rearrangement junctions
(or N-diversity), and somatic hypermutations in the IG loci (for review, see
ref. 1,2).

IMGT ®, the international ImMunoGeneTics information system®

(http://imgt.cines.fr) (3,4), was created in 1989 by the Laboratoire
d’ImmunoGénétique Moléculaire (LIGM) (Université Montpellier II and
CNRS) at Montpellier, France, in order to standardize and manage the
complexity of the immunogenetics data. IMGT ® is as the international reference
in immunogenetics and immunoinformatics. IMGT ® is a high quality integrated
knowledge resource, specialized in (i) the IG, TR, major histocompatibility
complex (MHC) of human and other vertebrates, (ii) proteins that belong
to the immunoglobulin superfamily (IgSF) and to the MHC superfamily
(MhcSF), and (iii) related proteins of the immune systems (RPI) of any
species. IMGT ® provides a common access to standardized data from genome,
proteome, genetics and 3D structures for the IG, TR, MHC, IgSF, MhcSF and
RPI (3,4).

The IMGT ® information system consists of databases, tools, and Web
resources (3). IMGT ® databases include one genome database, three sequence
databases, and one 3D structure database. IMGT ® interactive on-line tools
are provided for genome, sequence, and 3D structure analysis. IMGT ® Web
resources comprise 8,000 HTML pages of synthesis and knowledge (IMGT
Scientific chart, IMGT Repertoire, IMGT Education, IMGT Index, etc.) and
external links (IMGT Bloc-notes and IMGT other accesses) (4). Despite the
heterogeneity of these different components, all data in the IMGT ® infor-
mation system are expertly annotated. The accuracy, the consistency, and
the integration of the IMGT ® data, as well as the coherence between the
different IMGT ® components (databases, tools, and Web resources), are
based on IMGT-ONTOLOGY (5), the first ontology in immunogenetics and
immunoinformatics. IMGT-ONTOLOGY provides a semantic specification of
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the terms to be used in the domain and, thus, allows the management of
immunogenetics knowledge for all vertebrate species.

2. Standardization: IMGT-ONTOLOGY and IMGT Scientific Chart
IMGT-ONTOLOGY concepts are available, for the biologists and IMGT ®

users, in the IMGT Scientific chart (4) and have been formalized, for the
computing scientists, in IMGT-ML (6,7). The IMGT Scientific chart (4)
comprises the controlled vocabulary and the annotation rules necessary for the
immunogenetics data identification, description, classification, and numbering
and for knowledge management in the IMGT ® information system. All
IMGT ® data are expertly annotated according to the IMGT Scientific chart
rules. Standardized keywords, labels and annotation rules, standardized IG
and TR gene nomenclature, the IMGT unique numbering, and standardized
origin/methodology were defined, respectively, based on the six main concepts
of IMGT-ONTOLOGY (5) (Table 1). The IMGT Scientific chart is available
as a section of the IMGT ® Web resources. Examples of IMGT ® expertised
data concepts derived from the IMGT Scientific chart rules are summarized
in Table 1.

2.1. IDENTIFICATION concept: standardized keywords

IMGT ® standardized keywords for IG and TR include the following:
(i) general keywords—indispensable for the sequence assignments, they are
described in an exhaustive and non-redundant list, and are organized in a
tree structure and (ii) specific keywords—they are more specifically associated
to particularities of the sequences (orphon, transgene, etc.). The list is
not definitive and new specific keywords can easily be added if needed.
IMGT/LIGM-DB standardized keywords have been assigned to all entries.

2.2. DESCRIPTION concept: standardized sequence annotation

Two hundred and fifteen feature labels are necessary to describe all structural
and functional subregions that compose IG and TR sequences, whereas only
seven of them are available in EMBL, GenBank or DDBJ (14–16). Levels of
annotation have been defined, which allow the users to query sequences in
IMGT/LIGM-DB even though they are not fully annotated. Prototypes represent
the organizational relationship between labels and give information on the order
and expected length (in number of nucleotides) of the labels. This provides
rules to verify the manual annotation and to design automatic annotation tool.
One hundred and seventy-two additional feature labels have been defined for
the 3D structures. Annotation of sequences and 3D structures with these labels
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(in capital letters) constitutes the main part of the expertise. Interestingly,
65 IMGT ®-specific labels have been entered in the newly created Sequence
Ontology (17).

2.3. CLASSIFICATION concept: standardized IG and TR gene
nomenclature

The objective is to provide immunologists and geneticists with a standardized
nomenclature per locus and per species which allows extraction and comparison
of data for the complex B-cell and T-cell antigen receptor molecules. The
concepts of classification have been used to set up a unique nomenclature
of human IG and TR genes, which was approved by the Human Genome
Organization (HUGO) Nomenclature Committee HGNC in 1999 (9). All the
human IG and TR genes (1,2,18,19) have been entered by the IMGT Nomen-
clature Committee in Genome Database GDB (8), LocusLink and Entrez Gene
at NCBI, USA, and in IMGT/GENE-DB (20). IMGT reference sequences have
been defined for each allele of each gene based on one or, whenever possible,
several of the following criteria: germline sequence, first sequence published,
longest sequence, and mapped sequence. They are listed in the germline gene
tables of the IMGT Repertoire. The IMGT Protein displays show the translated
sequences of the alleles ∗01 of the functional or ORF genes (1,2).

2.4. NUMEROTATION concept: the IMGT unique numbering

A uniform numbering system for IG and TR sequences of all species has been
established to facilitate sequence comparison and cross-referencing between
experiments from different laboratories whatever the antigen receptor (IG or
TR), the chain type or the species (21,22).

This numbering results from the analysis of more than 5,000 IG and TR
variable region sequences of vertebrate species from fish to human. It takes into
account and combines the definition of the framework (FR) and complemen-
tarity determining region (CDR) (23), structural data from X-ray diffraction
studies (24), and the characterization of the hypervariable loops (25). In the
IMGT unique numbering, conserved amino acids from FR always have the same
number whatever the IG or TR variable sequence and whatever the species
they come from, for example cysteine 23 (in FR1-IMGT), tryptophan 41 (in
FR2-IMGT), leucine (or other hydrophobic amino acid) 89, and cysteine 104
(in FR3-IMGT). Tables and two-dimensional (2D) graphical representations
designated as IMGT Colliers de Perles are available on the IMGT ® Web site
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at http://imgt.cines.fr and in the works of M.-P. Lefranc and G. Lefranc (1,2).
The IMGT Collier de Perles of a variable domain or V-DOMAIN of an IG
light chain is shown, as an example, in Fig. 1.

This IMGT unique numbering has several advantages:

1. It has allowed the redefinition of the limits of the FR and CDR of the IG and TR
variable domains. The FR-IMGT and CDR-IMGT lengths become in themselves
crucial information, which characterize variable regions belonging to a group, a
subgroup, and/or a gene.

2. FR amino acids (and codons) located at the same position in different sequences
can be compared without requiring sequence alignments. This also holds for amino
acids belonging to CDR-IMGT of the same length.

3. The unique numbering is used as the output of the IMGT/V-QUEST alignment tool.
The aligned sequences are displayed according to the IMGT unique numbering and
with the FR-IMGT and CDR-IMGT delimitations.

4. The unique numbering has allowed a standardization of the description of mutations
and the description of IG and TR allele polymorphisms (1,2). The mutations and
allelic polymorphisms of each gene are described by comparison to the IMGT
reference sequences of the allele ∗01 (1,2).

5. The unique numbering allows the description and comparison of somatic hypermu-
tations of the IG variable domains.

By facilitating the comparison between sequences and by allowing the
description of alleles and mutations, the IMGT unique numbering represents
a big step forward in the analysis of the IG and TR sequences of all verte-
brate species. Moreover, it gives insight into the structural configuration of the
domains and opens interesting views on the evolution of these sequences, as
this numbering can be used for all sequences belonging to the V-set and C-set of
the IgSF. Structural and functional domains of the IG and TR chains comprise
the V-DOMAIN (9-strand beta-sandwich) (Fig. 2), which corresponds to the
V-J-REGION or V-D-J-REGION and is encoded by two or three genes (1,2),
and the constant domain or C-DOMAIN (7-strand beta-sandwich) (Fig. 2). The
IMGT unique numbering has been initially defined for the V-DOMAINs of the
IG and TR and for the V-LIKE-DOMAINs of IgSF proteins other than IG and
TR, for example in vertebrates human CD4 and Xenopus CTXg1 and in inver-
tebrates Drosophila amalgam and Drosophila fasciclin II. (10,26). It has been
extended to the C-DOMAINs of the IG and TR and to the C-LIKE-DOMAINs
of IgSF proteins other than IG and TR (11,26,27). More recently, the IMGT
unique numbering has also been defined for the groove domain or G-DOMAIN
(four beta-strand and one alpha-helix) (Fig. 2) of the MHC class I and class II
chains and for the G-LIKE-DOMAINs of MhcSF proteins other than MHC,
for example MICA (12,28).
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Fig. 1. IMGT Collier de Perles of a V-DOMAIN. The IMGT Collier de Perles of
V-DOMAIN is based on the IMGT unique numbering for V-DOMAIN and V-LIKE-
DOMAIN (10). Amino acids are shown in the one-letter abbreviation. The CDR-IMGT
are limited by amino acids shown in squares, which belong to the neighbouring FR-
IMGT. The CDR3-IMGT extend from position 105 to position 117. Hatched circles corre-
spond to missing positions according to the IMGT unique numbering for V-DOMAIN
and V-LIKE-DOMAIN (10). Arrows indicate the direction of the nine beta strands that
form the two beta sheets of the immunoglobulin (IG) fold (1,2). Positions at which
hydrophobic amino acids (hydropathy index with positive value: I, V, L, F, C, M and
A) and tryptophan (W) are found in more than 50% of analysed IG and TR sequences
are shown in blue. All proline (P) are shown in yellow. The V-DOMAIN chosen
as an example is a murine IG light kappa domain or V-KAPPA (IMGT/3Dstructure-
DB: 1a6t_C). CDR-IMGT regions (for a IG light kappa or lambda, or a TR alpha
or gamma V-DOMAIN) are coloured as follows: CDR1-IMGT (blue), CDR2-IMGT
(bright green) and CDR3-IMGT (dark green). (See Color Plate 1 following p. 32.)
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2.5. ORIENTATION concept: orientation of genomic instances
relative to each other

The ORIENTATION concept allows to set up genomic orientation (for
chromosome, locus, and gene) and DNA strand orientation. It is particularly
useful in large genomic projects to localize a gene in a locus and/or a sequence
(or a clone) in a contig or on a chromosome.

2.6. OBTENTION concept: controlled vocabulary for biological
origin and experimental methodology

The OBTENTION concept, that is still in development, will be particularly
useful for clinical data integration. This will help us to compare the reper-
toires of the IG antibody recognition sites and of the TR recognition sites in
normal and pathological situations (autoimmune diseases, infectious diseases,
leukemias, lymphomas, and myelomas).

3. IMGT ® Genomics, Genetics, and Structural Approaches
In order to extract knowledge from IMGT ® standardized immunogenetics

data, three main IMGT ® biological approaches have been developed: genomics,
genetics, and structural approaches (Table 2). The IMGT ® genomics approach

�
Fig. 2. Three-dimensional structures and IMGT Collier de Perles of a V-DOMAIN,

a C-DOMAIN and G-DOMAINs. (A) V-DOMAIN. The IMGT Collier de Perles is
based on the IMGT unique numbering for V-DOMAIN and V-LIKE-DOMAIN (10).
The V-DOMAIN chosen as an example is a human immunoglobulin (IG) variable
heavy domain or VH (IMGT/3Dstructure-DB: 1aqk_H). CDR-IMGT regions (for a
IG heavy, or a TR beta or delta V-DOMAIN) are colored as follows: CDR1-IMGT
(red), CDR2-IMGT (orange) and CDR3-IMGT (purple). Arrows indicate the direction
of the nine beta strands of the V-DOMAIN that form the two beta sheets of the
IG fold (1,2). Hydrogen bonds of the [GFCC′C′] sheet are shown with green lines.
(B) C-DOMAIN. The IMGT Collier de Perles is based on the IMGT unique numbering
for C-DOMAIN and C-LIKE-DOMAIN (11). The C-DOMAIN chosen as an example
is a human IG constant light lambda domain or C-LAMBDA (IMGT/3Dstructure-DB:
1mcd_B). Arrows indicate the direction of the seven beta strands of the C-DOMAIN
that form the two beta sheets of the IG fold (1,2). Hydrogen bonds of the [GFC] sheet
are shown with green lines. (C) G-DOMAINs. The IMGT Colliers de Perles are based
on the IMGT unique numbering for G-DOMAIN and G-LIKE-DOMAIN (12). The
G-DOMAINs chosen as examples are human major histocompatibility complex (MHC)
class I alpha groove domains or G-ALPHA1 and G-ALPHA2 (IMGT/3Dstructure-DB:
1agb_A). Amino acids are shown in the one-letter abbreviation. Hatched circles
correspond to missing positions according to the IMGT unique numbering (10–12).
(See Color Plate 2 following p. 32.)
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is gene-centered and mainly orientated towards the study of the genes within
their loci and on the chromosomes. The IMGT ® genetics approach refers to
the study of the genes in relation with their sequence polymorphisms and
mutations, their expression, their specificity, and their evolution. The genetics
approach heavily relies on the DESCRIPTION concept (and particularly on the
V-, D-, J- and C-REGION core concepts for the IG and TR), on the CLASSI-
FICATION concept (IMGT ® gene and allele names) and on the NUMERO-
TATION concept [IMGT unique numbering (10–12)]. The IMGT ® structural
approach refers to the study of the 2D and 3D structures of the IG, TR, MHC,
and RPI and to the antigen- or ligand-binding characteristics in relationship with
the protein functions, polymorphisms and evolution. The structural approach
relies on the CLASSIFICATION concept (IMGT ® gene and allele names),
DESCRIPTION concept (receptor and chain description and domain delimita-
tions), and NUMEROTATION concept [amino acid positions according to the
IMGT unique numbering (10–12)].

For each approach, IMGT ® provides databases [one genome database
(IMGT/GENE-DB), three sequence databases (IMGT/LIGM-DB, IMGT/
MHC-DB, and IMGT/PRIMER-DB), one 3D structure database (IMGT/
3Dstructure-DB)], interactive tools (ten on-line tools for genome, sequence
and 3D structure analysis), and IMGT Repertoire Web resources (providing an
easy-to-use interface to carefully and expertly annotated data on the genome,
proteome, and polymorphism and structural data of the IG and TR, MHC and
RPI) (Table 2). These databases, tools, and Web resources are detailed in the
following Sections 4–6. Other IMGT ® Web resources include:

1. IMGT Bloc-notes (Interesting links, etc.) provides numerous hyperlinks towards the
Web servers specializing in immunology, genetics, molecular biology, and bioin-
formatics (associations, collections, companies, databases, immunology themes,
journals, molecular biology servers, resources, societies, tools, etc.) (38).

2. IMGT Lexique.
3. The IMGT Immunoinformatics page.
4. The IMGT Medical page.
5. The IMGT Veterinary page.
6. The IMGT Biotechnology page.
7. IMGT Education (Aide-mémoire, Tutorials, Questions and answers, etc.) provides

useful biological resources for students and includes figures and tutorials (in English
and/or in French) in immunogenetics.

8. IMGT Aide-mémoire provides an easy access to information such as genetic code,
splicing sites, amino acid structures, and restriction enzyme sites.

9. IMGT Index is a fast way to access data when information has to be retrieved
from different parts of the IMGT site. For example, “allele” provides links to the
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IMGT Scientific chart rules for the allele description and to the IMGT Repertoire
“Alignments of alleles” and “Tables of alleles” (http://imgt.cines.fr).

4. IMGT ® Databases, Tools, and Web Resources for Genomics
Genomic data are managed in IMGT/GENE-DB, which is the compre-

hensive IMGT® genome database (20). In February 2007, IMGT/GENE-DB
contained 1,512 IG and TR genes and 2,461 alleles from human and mouse
IG and TR genes. Based on the IMGT ® CLASSIFICATION concept, all
the human IMGT ® gene names (1,2), approved by the HUGO Nomenclature
Committee HGNC in 1999, are available in IMGT/GENE-DB (20) and in
Entrez Gene at NCBI (USA). All the mouse IMGT ® gene and allele names
and the corresponding IMGT reference sequences were provided to Mouse
Genome Informatics MGI Mouse Genome Database MGD in July 2002 and
were presented by IMGT ® at the 19th International Mouse Genome Conference
IMGC 2005, in Strasbourg, France. IMGT-GENE-DB allows a query per gene
and allele name. IMGT/GENE-DB interacts dynamically with IMGT/LIGM-DB
(30) to download and display human and mouse gene-related sequence data.
This is the first example of an interaction between IMGT ® databases using the
CLASSIFICATION concept.

The IMGT ® genome analysis tools manage the locus organization and gene
location and provide the display of physical maps for the human and mouse
IG, TR, and MHC loci. They allow to view genes in a locus (IMGT/GeneView
and IMGT/LocusView) to search for clones (IMGT/CloneSearch), to search for
genes in a locus (IMGT/GeneSearch and IMGT/GeneInfo) based on IMGT ® gene
names, functionality or localization on the chromosome, to provide information
on the clones that were used to build the locus contigs (accession numbers are
from IMGT/LIGM-DB and gene names from IMGT/GENE-DB) or to display
information on the human and mouse IG and TR potential rearrangements.

The IMGT Repertoire genome data include chromosomal localizations, locus
representations, locus description, germline gene tables, potential germline
repertoires, lists of IG and TR genes and links between IMGT, HGNC, GDB,
Entrez Gene, and OMIM, and correspondence between nomenclatures (1,2).

5. IMGT ® Databases, Tools, and Web Resources for Genetics
IMGT/LIGM-DB (30) is the comprehensive IMGT ® database of IG and TR

nucleotide sequences from human and other vertebrate species, with trans-
lation for fully annotated sequences, created in 1989 by LIGM, Montpellier,
France, on the Web since July 1995. IMGT/LIGM-DB is the first and the
largest IMGT ® database. In February 2007, IMGT/LIGM-DB contained 105,188
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nucleotide sequences of IG and TR from 150 species. The unique source of data
for IMGT/LIGM-DB is EMBL that shares data with the other two generalist
databases GenBank and DDBJ. IMGT/LIGM-DB sequence data are identified
by the EMBL/GenBank/DDBJ accession number. Based on expert analysis,
specific detailed annotations are added to IMGT flat files.

Since August 1996, the IMGT/LIGM-DB content closely follows the EMBL
one for the IG and TR, with the following advantages: IMGT/LIGM-DB does
not contain sequences that have previously been wrongly assigned to IG and TR;
conversely, IMGT/LIGM-DB contains IG and TR entries that have disappeared
from the generalist databases [for example, the L36092 accession number that
encompasses the complete human TRB locus is still present in IMGT/LIGM-DB,
whereas it has been deleted from EMBL/GenBank/DDBJ due to its too large
size (684,973 bp); in 1999, IMGT/LIGM-DB detected the disappearance of 20
IG and TR sequences that inadvertently had been lost by GenBank, and allowed
the recuperation of these sequences in the generalist databases].

The IMGT/LIGM-DB annotations (gene and allele name assignment,
labels) allow data retrieval not only from IMGT/LIGM-DB but also from
other IMGT ® databases. For example, the IMGT/GENE-DB entries provide
the IMGT/LIGM-DB accession numbers of the IG and TR cDNA sequences
that contain a given V, D, J or C gene. The automatic annotation of rearranged
human and mouse cDNA sequences in IMGT/LIGM-DB is performed by
IMGT/Automat (39), an internal Java tool that implements IMGT/V-QUEST
and IMGT/ JunctionAnalysis.

Standardized information on oligonucleotides (or primers) and combinations
of primers (Sets and Couples) for IG and TR are managed in IMGT/PRIMER-DB
(31), the IMGT ® oligonucleotide database on the Web since February 2002.
IMGT/MHC-DB (32) hosted at EBI comprises IMGT/HLA for human MHC
(or HLA) and IMGT/MHC-NHP for MHC of non-human primates.

The IMGT ® tools for the genetics approach comprise IMGT/V-QUEST (33,
40) for the identification of the V, D, and J genes and of their mutations,
IMGT/JunctionAnalysis (34,40) for the analysis of the V-J and V-D-J junctions
that confer the antigen receptor specificity, IMGT/Allele-Align for the detection
of polymorphisms, and IMGT/Phylogene (35) for gene evolution analyses.
IMGT/V-QUEST (V-QUEry and STandardization) (http://imgt.cines.fr) is an
integrated software for IG and TR (33,40). This tool, easy to use, analyses an
input IG or TR germline or rearranged variable nucleotide sequence. IMGT/V-
QUEST results comprise the identification of the V, D, and J genes and alleles
and the nucleotide alignment by comparison with sequences from the IMGT
reference directory, the delimitations of the FR-IMGT and CDR-IMGT based
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on the IMGT unique numbering, the protein translation of the input sequence,
the identification of the JUNCTION, the description of the mutations and
amino acid changes of the V-REGION, and the 2D IMGT Collier de Perles
representation of the V-REGION or V-DOMAIN. The set of sequences from
the IMGT reference directory, used for IMGT/V-QUEST, can be downloaded
in FASTA format from the IMGT ® site.

IMGT/JunctionAnalysis (34,40) is a tool developed by LIGM, comple-
mentary to IMGT/V-QUEST, which provides a thorough analysis of the V-J and
V-D-J junction of IG and TR rearranged genes. The JUNCTION extends from
2nd-CYS 104 to J-PHE or J-TRP 118 inclusive. J-PHE or J-TRP are easily
identified for in-frame rearranged sequences when the conserved Phe/Trp-Gly-
X-Gly motif of the J-REGION is present. The length of the CDR3-IMGT of
rearranged V-J-GENEs or V-D-J-GENEs is a crucial piece of information. It is
the number of amino acids or codons from position 105 to 117 (J-PHE or J-TRP
non-inclusive). CDR3-IMGT amino acid and codon numbers are according to
the IMGT unique numbering for V-DOMAIN (10). IMGT/JunctionAnalysis
identifies the D-GENE and allele involved in the IGH, TRB, and TRD V-D-J
rearrangements by comparison with the IMGT reference directory and delimits
precisely the P, N, and D regions (1,2). Results from IMGT/JunctionAnalysis
are more accurate than those given by IMGT/V-QUEST regarding the D-GENE
identification. Indeed, IMGT/JunctionAnalysis works on shorter sequences
(JUNCTION) and with a higher constraint because the identification of the
V-GENE and J-GENE and alleles is a prerequisite to perform the analysis.
Several hundreds of junction sequences can be analysed simultaneously.

Other IMGT ® Tools for sequence analysis comprise IMGT/Allele-Align that
allows the comparison of two alleles highlighting the nucleotide and amino acid
differences and IMGT/PhyloGene (35), an easy-to-use tool for phylogenetic
analysis of IMGT standardized reference sequences.

The IMGT Repertoire polymorphism data are represented by “Alignments
of alleles,” “Tables of alleles,”’ “Allotypes,”, “Protein displays,” particularities
in protein designations, IMGT reference directory in FASTA format, correspon-
dence between IG and TR chain and receptor IMGT designations (1,2).

6. IMGT ® Databases, Tools, and Web Resources for Structural
Analysis

Structural data are compiled and annotated in IMGT/3Dstructure-DB (36),
the IMGT ® 3D structure database, created by LIGM, on the Web since
November 2001. IMGT/3Dstructure-DB comprises IG, TR, MHC, and RPI with
known 3D structures. In February 2007, IMGT/3Dstructure-DB contained 1,221



Color Plate 1, IMGT Collier de Perles of a V-DOMAIN. The IMGT Collier de
Perles of V-DOMAIN is based on the IMGT unique numbering for V-DOMAIN and
V-LIKE-DOMAIN (10) (Chapter 2, Fig. 1; see full caption on p. 25 and discussion
on p. 24.)



Color Plate 2, Three-dimensional structures and IMGT Collier de Perles of a
V-DOMAIN, a C-DOMAIN and G-DOMAINs. (Chapter 2, Fig. 2; see full caption
on p. 27 and discussion on p. 24.)



Color Plate 3, IMGT pMHC contact sites of human HLA-A*0201 MHC-I and a
9-amino acid peptide side chains (IMGT/3Dstructure-DB: 1im3). (Chapter 2, Fig. 4;
see full caption on p. 36 and discussion on p. 35.)



Color Plate 4, IMGT pMHC contact sites of human HLA-DRA*0101 and HLA-
DRB5*0101 MHC-II and the peptide side chains (9 amino acids located in the groove)
(IMGT/3Dstructure-DB: 1fv1). (Chapter 2, Fig. 5; see full caption on p. 37 and
discussion on p. 35.)
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atomic coordinate files. These coordinate files, extracted from the Protein Data
Bank (PDB) (41), are renumbered according to the standardized IMGT unique
numbering (10–12). The IMGT/3Dstructure-DB cards provide IMGT ® annota-
tions (assignment of IMGT ® genes and alleles, IMGT ® chain and domain
labels, and IMGT Colliers de Perles on one layer and two layers), downloadable
renumbered IMGT/3Dstructure-DB flat files, visualization tools and external
links. IMGT/3Dstructure-DB residue cards provide detailed information on the
inter- and intra-domain contacts of each residue position (Fig. 3).

The IMGT/StructuralQuery tool (36) analyses the intramolecular interac-
tions for the V-DOMAINs. The contacts are described per domain (intra- and
inter-domain contacts) and annotated in term of IMGT ® labels (chains and
domain), positions (IMGT unique numbering), backbone or side-chain impli-
cation. IMGT/StructuralQuery allows to retrieve the IMGT/3Dstructure-DB
entries, based on specific structural characteristics: phi and psi angles, acces-
sible surface area (ASA), amino acid type, distance in angstrom between amino
acids, and CDR-IMGT lengths (36).

In order to appropriately analyse the amino acid resemblances and differences
between IG, TR, MHC, and RPI chains, 11 IMGT ® classes were defined
for the amino acid “chemical characteristics” properties and used to set up
IMGT Colliers de Perles reference profiles (37). The IMGT Colliers de Perles
reference profiles allow to easily compare amino acid properties at each position
whatever the domain, the chain, the receptor or the species (37). The IG and
TR variable and constant domains and the MHC groove domains represent a
privileged situation for the analysis of amino acid properties in relation with
3D structures, by the conservation of their 3D structure despite divergent amino
acid sequences and by the considerable amount of genomic (IMGT Repertoire),
structural (IMGT/3Dstructure-DB) and functional data available. These data are
not only useful to study mutations and allele polymorphisms but are also needed
to establish correlations between amino acids in the protein sequences and 3D
structures, to analyse the IgSF and MhcSF domain interactions (42) and to
determine amino acids potentially involved in the immunogenicity. One of the
key elements in the adaptive immune response is the presentation of peptides
by the MHC to the TR at the surface of T cells. The characterization of the
TR/peptide/MHC trimolecular complexes (TR/pMHC) is crucial to the fields
of immunology, vaccination, and immunotherapy. In IMGT/3Dstructure-DB,
TR/pMHC molecular characterization, and pMHC contact analysis have been
standardized, based on the IMGT unique numbering for G-DOMAIN, and
11 IMGT pMHC contact sites (C1–C11) have been defined (43). The IMGT
pMHC contact sites represent the MHC amino acid positions that have contacts
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with the peptide side chains. They are particularly useful to compare pMHC
interactions whatever the MHC classes or chains, whatever the species and
whatever the peptide sequence or length (43). There are no C2, C7, and C8
contact sites for MHC-I with 8-amino acid peptides and no C2 and C7 for
MHC-I 3D structures with 9-amino acid peptides. In contrast, for MHC-II,
C2 is present but there are no C7 and C8 (43). The IMGT pMHC contact
sites are provided dynamically for the pMHC and the TR/pMHC 3D structures
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available in IMGT/3Dstructure-DB. For example, the IMGT pMHC contact
sites of a MHC-I (human HLA-A*0201) and a 9-amino acid peptide side chains
are shown in Fig. 4 (IMGT/3Dstructure-DB: 1im3), and the IMGT pMHC
contact sites of a MHC-II (human HLA-DRA*0101 and HLA-DRB5*0101)
binding 9 amino acids of the peptide in the groove are shown in Fig. 5 (IMGT/
3Dstructure-DB: 1fv1).

The IMGT Repertoire Structural data comprise IMGT Colliers de Perles
(1,2,10–12), FR-IMGT and CDR-IMGT lengths, and 3D representations of IG
and TR variable domains. This visualization permits rapid correlation between
protein sequences and 3D data retrieved from the PDB.

7. Conclusion
Since July 1995, IMGT ® has been available on the Web at

http://imgt.cines.fr. IMGT ® has an exceptional response with more than 140,000
requests a month. The information is of much value to clinicians and biological
scientists in general. IMGT ® databases, tools, and Web resources are exten-
sively queried and used by scientists from both academic and industrial labora-
tories, who are equally distributed between the United States, Europe, and the
remaining world. IMGT ® is used in very diverse domains: (i) fundamental
and medical research (repertoire analysis of the IG antibody recognition sites
and of the TR recognition sites in normal and pathological situations such as
autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, and

�
Fig. 3. IMGT Residue@Position card. The identification of a “IMGT Residue@

Position” comprises the position number according to the IMGT unique numbering
(10–12), the residue name (with three letters and eventually one letter abbre-
viation), the domain description and the IMGT/3Dstructure-DB chain ID. The
example shows the contacts of position 89, occupied by a leucine LEU (L), in the
V-KAPPA domain of the 1a6t_C chain. The original number in the PDB file is
indicated. The secondary structure, the phi and psi angles (in degrees) and accessible
surface area (ASA) (in square angstroms) are provided. The user can select, for the result
display, the types of contacts (non covalent, polar, hydrogen bond, non polar, covalent
bond or disulfide bond) and the atom contact pair categories (backbone/backbone, side
chain/side chain, backbone/side chain and side chain/backbone atoms). The results are
shown as a table with a list of the IMGT Residue@Position which are in contact with
the IMGT Residue@Position at the top of the card, and for each of them, the total
number of atom pair contacts and the detailed description of the contacts as selected
by the user are also indicated.



36 Lefranc

Fig. 4. IMGT peptide major histocompatibility complex (pMHC) contact sites
of human HLA-A*0201 MHC-I and a 9-amino acid peptide side chains
(IMGT/3Dstructure-DB: 1im3). The numbers 1–9 refer to the numbering of the peptide
amino acids P1–P9. C1–C11 refer to the 11 pMHC contact sites defined by IMGT®

(43). There are no C2 and C7 in MHC-I 3D structures with 9-amino acid peptides.
There are no C5 and C8 in this 3D structure as P4 and P6 do not contact MHC amino
acids. The view of the IMGT Collier de Perles is from above the cleft, with G-ALPHA1
on top and G-ALPHA2 on bottom of the figure. (See Color Plate 3 following p. 32.)
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Fig. 5. IMGT peptide major histocompatibility complex (pMHC) contact sites of
human HLA-DRA*0101 and HLA-DRB5*0101 MHC-II and the peptide side chains
(9 amino acids located in the groove) (IMGT/3Dstructure-DB: 1fv1). The numbers
1–9 refer to the numbering of the peptide amino acids 1–9 located in the groove.
C1–C11 refer to the 11 pMHC contact sites defined by IMGT® (43). There are no
C7 and C8 in MHC-II 3D structures with peptide of 9 amino acids located in the
groove. There is no C5 in this 3D structure as 5 does not contact MHC amino acids.
The view of the IMGT Collier de Perles is from above the cleft, with G-ALPHA
on top and G-BETA on bottom of the figure. (See Color Plate 4 following p. 32.)
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myelomas), (ii) veterinary research (IG and TR repertoires in farm and wildlife
species), (iii) genome diversity and genome evolution studies of the adaptive
immune responses, (iv) structural evolution of the IgSF and MhcSF proteins,
(v) biotechnology related to antibody engineering [single chain Fragment
variable (scFv), phage displays, combinatorial libraries, chimeric, humanized,
and human antibodies], (vi) diagnostics (clonalities, detection, and follow-up
of residual diseases) and (vii) therapeutical approaches (grafts, immunotherapy,
and vaccinology). Owing to its high quality and data distribution based on
IMGT-ONTOLOGY, IMGT ® has an important role to play in the devel-
opment of immunogenetics Web services. The creation of dynamic interactions
between the IMGT ® databases and tools, using Web services and IMGT-ML,
and the design of IMGT-Choreography (4), represents novel and major devel-
opments of IMGT ®, the international reference in immunogenetics and
immunoinformatics.

8. Citing IMGT ®

Authors who make use of the information provided by IMGT ® should cite
ref. 3 as a general reference for the access to and content of IMGT ® and quote
the IMGT ® home page URL, http://imgt.cines.fr.
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The IMGT/HLA Database

James Robinson and Steven G. E. Marsh

Summary

The human leukocyte antigen (HLA) complex is located within the 6p21.3 region on the
short arm of human chromosome 6 and contains more than 220 genes of diverse function.
Many of the genes encode proteins of the immune system and include many highly polymorphic
HLA genes. The naming of new HLA genes and allele sequences and their quality control is
the responsibility of the WHO Nomenclature Committee for Factors of the HLA System. The
IMGT/HLA Database acts as the repository for these sequences and is recognized as the primary
source of up-to-date and accurate HLA sequences. The IMGT/HLA website provides a number of
tools for accessing the database: these include allele reports, sequence alignments, and sequence
similarity searches. The website is updated every 3 months with all the new and confirmatory
sequences submitted to the WHO Nomenclature Committee. Submission of HLA sequences to
the committee is possible through the tools provided by the IMGT/HLA Database.

Key Words: HLA; MHC; nomenclature; sequences; alleles; database

1. Introduction
1.1. Background

The IMGT/HLA Database is a specialist database for the allelic sequences
of the genes in the human leukocyte antigen (HLA) system, also known as the
human major histocompatibility complex (MHC). This complex of over 4 Mb
is located within the 6p21.3 region of the short arm of human chromosome 6
and contains in excess of 220 genes (1). Genes included in the database are
those HLA genes involved in antigen presentation to T cells or are non-
functional genes related to them. The core of the HLA system consists of 21
highly polymorphic HLA genes. These influence the outcome of cell and organ
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transplants and mediate the host response to infectious disease and are
associated with susceptibility to a wide range of chronic, non-infectious diseases
(2,3). Nucleotide sequences for more than 2,100 different alleles of these genes
have been determined. HLA genes are divided into class I (HLA-A, HLA-B,
and HLA-C) or class II (HLA-DR, HLA-DQ, and HLA-DP) genes depending
on the structure and function of their protein products. The naming of new
HLA genes and allele sequences and their quality control is the responsibility
of the WHO Nomenclature Committee for Factors of the HLA System (4,5).
The IMGT/HLA Database acts as the repository for these sequences and is
recognized as the primary source of up-to-date and accurate HLA sequences.

1.2. A Historical Perspective

The sequencing of HLA alleles first began in the late 1970s using protein
sequencing techniques predominately to determine HLA class I alleles. The
first complete HLA class I allele sequence, B7.2, now known as B∗070201,
was published in 1979 (6). It was a few years later in 1982 that the first HLA
class II allele, a DRA allele, was determined by more conventional cDNA
sequencing (7). In 1987, the first HLA DNA sequences or alleles were named
by the WHO Nomenclature Committee for Factors of the HLA System (8).
Previous to this only the serologically defined antigens had been given official
designations. At this time, some 12 class I alleles were named A∗0201-0204,
B∗0701-0702, and B∗2701-2706, together with 9 class II alleles, DRB1∗0401-
0405, DRB3∗0101, 0201, 0301, and DRB4∗0101. Although many other alleles
had already been defined, they were not considered by the committee at that
time. Two years later, in 1989, the Nomenclature Committee met for the first
time outside the auspices of an International Histocompatibility Workshop to
assign official allele names to the large number of HLA allele sequences that
were by that time being published regularly. A total of 56 novel class I alleles
and 78 class II alleles were named (9). It soon became apparent that the
analysis and assigning of official names to alleles could not wait for either
periodic histocompatibility workshops of even annual Nomenclature Committee
meetings and so began the process of assessing newly defined HLA allele
sequences. This work was carried out by Julia Bodmer and Steven Marsh at the
Imperial Cancer Research Fund (ICRF) in collaboration with Peter Parham at
Stanford University. Out of the need to record and manage the HLA sequence
data being submitted to the Nomenclature Committee came the first incarnation
of an HLA Sequence Databank (HLA-DB) (10). Periodically, HLA class I
(11–14) and class II (15–20) sequence alignments were published in various
journals, and by 1995, the numbers of new alleles being reported warranted the
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publication of monthly nomenclature updates (21), something which continues
to this day (Fig. 1). By 1995, the expansion of the Internet and the introduction
of the World Wide Web (WWW) saw the first distribution of the HLA sequence
alignments from the web pages of the Tissue Antigen Laboratory at the ICRF.
This work was transferred to the Anthony Nolan Research Institute (ANRI) in
1996 where it continues. The IMGT/HLA Database (22–25) began in 1997 as
part of a European collaboration involving the ICRF, ANRI, and the European
Bioinformatics Institute (EBI) who maintain the European Molecular Biology
Laboratory’s nucleotide sequence database (EMBL). The work was initially
funded by grants from the European Union, BIOMED1 (BIOCT930038), and

Fig. 1. Numbers of human leukocyte antigen (HLA) class I and II alleles officially
recognized by the WHO Nomenclature Committee for Factors of the HLA System
1987–2005. The numbers of HLA class I and II alleles that have been officially named
by the WHO Nomenclature Committee for Factors of the HLA System over the period
November 1987 to December 2005.
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BIOTECH2 (BIO4CT960037), awarded to the ICRF as part of the IMGT
database project (26). The IMGT/HLA Database was first released in 1998;
the database combines the sequence data and information previously provided
to the WHO Nomenclature Committee for Factors of the HLA System and the
additional data found in the original EMBL/GenBank/DNA Database of Japan
(DDBJ) entries.

1.3. Generalist Databanks

It should be noted that all sequences within the IMGT/HLA Database
should also be available from the more general nucleotide sequence databases,
EMBL (27), GenBank (28), and DDBJ (29). The generalist databanks are not
HLA specific, rather large international data repositories of gene sequences
for all organisms. These three databases form an international collaboration
and exchange sequences daily so that each contains identical data. Most
published sequences can be found in these databases. The advantage of using
the large generalist sequence databases is the large number of sequences
available, covering a wide range of data relating to HLA. The main problem
when accessing HLA sequences from these databases lies in the definition of
the sequence. Upon submission, a number of steps are taken to ensure that
the sequence is accurately described and up-to-date. The author then assigns
keywords and description, and these can vary. Despite the work of the WHO
Nomenclature Committee for Factors of the HLA System in monitoring HLA
allele designations and maintaining the sequences, they have no control of how
sequences are defined in these generalist databases. Readers should therefore
be aware that entries may be incorrectly named, contain unofficial designations,
or contain sequencing errors.

2. The IMGT/HLA Database
2.1. IMGT/HLA Organization and Content

The database contains entries for all HLA alleles officially named
by the WHO Nomenclature Committee for Factors of the HLA System.
These entries are derived from expertly annotated copies of the original
EMBL/GenBank/DDBJ entries. In order to store all the component entries as
well as the nomenclature information and other data, the IMGT/HLA Database
utilizes a relational database model system. The database has evolved from an
original flat file structure, through an intermediate version held in a Filemaker
Pro® database (Filemaker, Inc., USA), to a much more sophisticated structure as
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required to store the increasingly complex information. The relational database
uses the ORACLE® database management system to provide a database server.
Access to the relational database is restricted to the HLA Informatics Group
at the ANRI only. All user queries access a smaller publicly available copy
of the database via a web-based interface. This allows the database to store
confidential information, restrict data access, and improve data security. All
information is released into the public copy on regular 3 monthly updates. Users
of the database who submit new information are encouraged to make their data
publicly available as soon as possible and not to maintain long holding times
on the data.

2.2. The Virtual Sequence

The IMGT/HLA Database can contain a number of different entries for
any single allele. In order to store all the information for each allele in a
single entry available to the user, the virtual sequence concept was developed
(Fig. 2). In the database, a virtual sequence represents the combination of all the
EMBL/GenBank/DDBJ entries for a single allele combining to form a single
expertly annotated entry. These component entries are submitted to the database
in the form of IMGT/HLA submissions either by the original author or by our
curators when sequences of interest have been identified by data mining. The
submissions are annotated by our curators to remove known sequence anomalies
and incorrect annotations. The nucleotide sequences are then aligned using the
ClustalX program (30). This provides a multiple sequence alignment of the
component sequence using a recognized alignment program. The alignment

Fig. 2. Construction of a virtual sequence. A virtual sequence is constructed for each
allele, representing the longest available sequence for each allele. This is generated
by combining the component entries from European Molecular Biology Laboratory’s
nucleotide sequence database (EMBL)/GenBank/DNA Database of Japan (DDBJ) to
create a single entry. The diagram shows four component entries aligned and merged
to form a virtual sequence.
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produced is then reduced to the single longest contiguous sequence. This
nucleotide sequence can be used for the allele sequence; this virtual sequence is
then aligned against the reference sequence for that locus. Previous alignments
sometimes used a consensus sequence for alignments; however, following
guidelines issued by the Human Gene Nomenclature Committee (31), the
IMGT/HLA Database instead uses a reference allele sequence at each locus.
Insertions, indicated by periods (.), are added to the virtual sequence to ensure
alignment to the reference sequence.

To distinguish the IMGT/HLA entries from the component EMBL entries,
all alleles have a unique accession number. The EMBL accession numbers
are not used as primary identifiers in IMGT/HLA because many alleles
are derived from multiple EMBL sequence entries. The accession numbers
follow the format HLA00000, where the “00000” represents a numerical code.
Both their unique name and accession number can, therefore, identify all
alleles.

2.3. Database Distribution

The first public release of the IMGT/HLA Database was made on the
December 16, 1998 and was included on the EBI web server as part of the
IMGT project. The main access point for the user is the World Wide Web,
which allows the users to employ a number of search tools and other facil-
ities to retrieve, manipulate, and analyze HLA data. This is all done through
the custom-written Common Gateway Interface (CGI) scripts available at the
IMGT/HLA website. Other access points for the user include the EBI Sequence
Retrieval System (SRS) search engine, EBI Basic Local Alignment Search Tool
(BLAST) and Fast-All (FASTA) search tools, the EMBL CD-ROM releases,
and the EBI public File Transfer Protocol (FTP) directory. A copy of some
data stored in the IMGT/HLA Database is also provided in a text-based format
at the HLA Informatics Group web pages of the ANRI website. The database
is updated every 3 months to include all the publicly available sequences
officially named by the WHO Nomenclature Committee since the last release
of the database. With each release, all the tools are updated to include the new
sequences, and information on all the new and modified sequences is reported.
The previous release is archived for reference.

2.4. The IMGT/HLA Website

The website can be split into three main areas. First, information and
help pages that provide background on the database, provide in-depth help
on the tools and data available and documentation of the IMGT/HLA file



The IMGT/HLA Database 49

formats. Secondly, the website includes the tools designed specifically for the
IMGT/HLA Database. These allow the user to perform sequence analysis and
retrieval. Third, the final pages are links to sequence-analysis tools at the EBI,
including SRS, BLAST, and FASTA. The tools available from the website will
be discussed in detail later. The core tools allow the users to perform sequence
alignments, allele queries, and sequence searches. This is done by combining
the custom-built tools, with existing tools already available from the EBI such
as BLAST, FASTA, and SRS. Access to all of the pages and tools is via the
IMGT/HLA Database homepage (see Fig. 3).

Fig. 3. The IMGT/HLA Database Homepage. The database homepage is the main
access point to the online tools provided by the database.
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2.4.1. IMGT/HLA tools

2.4.1.1. Allele Search Tools

The most used tool on the IMGT/HLA website is the “Allele Query Tool.”
This is designed to allow the user to retrieve the full sequence and information
pertaining to any officially named allele. The tool is available directly from
the homepage or from the tools section of the website. The tool provides a
simple-to-use interface for retrieving allele information. Similar searches can
be performed using the SRS interface (discussed later), but this requires more
knowledge of the tools, file structure, and data. The “Allele Query Tool”
requires only a search term in order to retrieve a report on any allele in the
database. This can be either the allele name or a single EMBL/GenBank/DDBJ
accession number. The search tool allows different resolutions of the alleles
numeric code to allow flexibility in searches. For example, the A∗0101
designation could refer to one of four alleles, A∗01010101, A∗01010102N,
A∗010102, and A∗010103, and entering “A∗0101” will retrieve all these alleles.
Working back from this, entering just “A∗01” would retrieve the 19 alleles
with the “A∗01” designation. This facility can be exploited to gain a list of
all alleles at any locus by entering a “locus∗,” for example, “B∗” for HLA-B,
in the box to retrieve the full list. Other shortcuts include the retrieval of
null alleles for a specific locus; by entering “locus∗N” into the box you can
retrieve a list of all non-expressed or null alleles. The output of the search lists
all the allele names that correspond to the search term provided; these then
provide a hypertext link to the full entry for each allele. Searching by accession
number is exactly the same as for allele designations; by entering a recog-
nized accession number (or part of) into the tool, the allele information can be
retrieved.

The output provided for each allele includes the official allele designation,
previously used designations, and the unique IMGT/HLA accession number
that is a link to the IMGT/HLA flat file (Fig. 4). Other information provided
includes the date that the allele was named and its current status (as some
allele designations have been deleted) and information on the individual or
cell line from which the sequence was derived. Links to all component
EMBL/GenBank/DDBJ entries are also included. Any published references are
also included with, wherever possible, a link to the PubMed entry for that
citation. PubMed provides an online version of the abstract as well as links
to other citations by the author and to similar papers. The final section of the
output details the official nucleotide and protein sequence.
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The IMGT/HLA Database is also available in a flat file format, which is
standard format for text files. These flat files follow the EMBL flat file format
and provide a standard release format. The flat files utilize the unique accession
number and assign a standardized description and keywords to all entries. This
accession number is used in the EBI tools to link back to the flat file entry. The
flat files also contain the first release of the IMGT/HLA features. The sequence
features currently used are a small subset of the standard set used by EMBL,
but as the database continues to develop, further features may be added. The
initial feature qualifiers cover the source (cell of origin), the coding sequence
(cds), exon boundaries, and the protein translation. Other information provided
by the flat file replicates the allele query tool output. The only additional
information included is a list of all the component sequence entries and other

Fig. 4. An IMGT/HLA flat file entry. An IMGT/HLA flat file is shown that can
be accessed through the EBI’s SRS browser. The flat file is a text-based file that
identifies different sections by the line headings, for example, AC = accession number
and lines beginning with “R” relate to references. The format is consistent with that
used for the European Molecular Biology Laboratory’s nucleotide sequence database
(EMBL). Lines beginning with “FT” denote the sequence features; in these examples,
they include the source cell and exon information.
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cross-references to sequence databases such as SWISSPROT, TREMBL, and
PDB. These links are to the original entries, and so, the files retrieved may differ
from the IMGT/HLA entry due to the annotation procedure. The information
in the IMGT/HLA entry should therefore be taken as the definitive source in
cases of disagreement.

The SRS tool (32) is an advanced search tool for interrogating flat files,
and the IMGT/HLA flat files are included in the EBI SRS libraries. These
interrogations can range from very simple queries, such as searching for an
accession number or keyword, through to more complex searches such as for
authors of papers describing an allele. In order to use SRS, some familiarity
with the flat file format is required. This tool allows the user to search on
any of the sequence features, the accession numbers, keywords assigned to the
sequences, or the description, and is probably the best method of retrieving
HLA sequences from a general nucleotide database. Once users are accustomed
to the way data are presented, they can quickly build up very complex queries.
Another advantage of the SRS tool is that it can also be used to launch other
applications, for example, BLAST, Clustal, on any query results. Therefore, it is
possible to retrieve all the flat files for a certain subset of data and automatically
load these into the Clustal alignment tool for example. The SRS tool also allows
the users to customize the output of searches, so that they can quickly see how
relevant entries are to your search criteria. Tutorials for the SRS search engine
are available from the EBI and SRS website. SRS can be found at the EBI
website and can be used to search a number of different databases.

2.4.1.2. Sequence Search Tools

The first type of search that many people do is to look for a particular allele
by name or by a certain characteristic such as the cell or author. The main
alternative to this is to search on the actual sequence and not on the name
or keywords. Sequence similarity searches look for sequence similarities in a
query sequence against a reference database of known sequences. The accuracy
of these matches is based on a number of similarity measures that in general
retrieve identical or highly similar sequences. The IMGT/HLA Database is
included as a library for searching within the EBI’s Similarity & Homology
toolset. These include well-known tools such as BLAST and FASTA. BLAST
is used to compare a sequence with those contained in nucleotide and protein
databases by aligning the novel sequence with previously characterized genes.
The emphasis of this tool is to find regions of sequence similarity, which will
yield functional and evolutionary clues about the structure and function of
this novel sequence. FASTA is used for a fast protein comparison or a fast
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nucleotide comparison. This program achieves a high level of sensitivity for
similarity searching at high speed. Both these tools can be used for searching
libraries of HLA nucleotide and protein sequences.

2.4.1.3. IMGT/HLA sequence alignments

The other main use of the IMGT/HLA Database is viewing multiple sequence
alignments. HLA allele sequences may differ from each other by as little as
a single nucleotide, over a genomic sequence of 3,300 bases. These align-
ments allow a visual interpretation of sequence similarity, so that polymorphic
positions can easily be identified, and motifs found in multiple alleles are
easily identified (Fig. 5). The representation of HLA sequences in this manner
can be useful when designing reagents for HLA typing, such as primers or
oligonucleotide probes. The sequence alignments are available via a link from
the main IMGT/HLA homepage; they can also be found using the tools page
of the website. The interface provided lets the user define a number of key
variables for the alignments, before producing an online output, which can be
printed or downloaded. The first step in any alignment is to select the locus
of interest. The tool provides a drop-down list of all loci available and also
includes some additional options such as class I (all HLA-A, HLA-B, and
HLA-C alleles) and different HLA-DRB gene combinations. The selection of
a locus automatically updates the list of features that can be aligned, as well
as the default reference sequence used for the alignment. The types of feature
available for alignment are the nucleotide cds and individual exons, the genomic
sequences and individual introns (where available); and the signal peptide,
mature protein and full length protein sequence. In addition, there are some
commonly requested regions like a single alignment of both exons 2 and 3 or
exons 2, 3, and 4, which have been included to aid in the analysis of sequence-
based typing (SBT) results. Genomic sequence is currently available only for
the HLA class I loci; however, work is underway on class II genomic sequences
for inclusion into the alignment tool. The alignment tool options also allow the
user to display a subset of alleles of a particular locus, omit alleles unsequenced
for a particular region, and align against a particular reference or consensus
sequence. The alignment tool uses standard formatting conventions for the
display of sequence alignments. The alignment tool does not perform a sequence
alignment each time it is used, but it extracts pre-aligned sequences, allowing for
faster access.

The alignments adhere to a number of conventions for displaying evolu-
tionary events and numbering. The numbering of the alignments is based on
the sequence of the reference allele. For a nucleotide sequence, the A of the
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Fig. 5. Alignment formats available from the IMGT/HLA Database. The examples
shown are based on alignment A that shows 15 DRB1∗01 alleles. In these alignments,
a dash (-) indicates identity to the reference sequence, and an asterisk (∗) denotes an
unsequenced base. In alignment A, the allele names are underlined, as they are hyper-
links to the allele’s entry, and the nucleotide sequence is displayed in codons. Alignment
B shows how an alternative reference sequence can be used; here for example, we
have used a DRB1 consensus sequence. The sequence is displayed in blocks of ten
nucleotides. Alignment C represents a translation of the nucleotide sequence to produce
a protein sequence alignment. In this final example, the DRB1∗0103 allele has been
used as the reference sequence.

initiation Methionine codon is denoted nucleotide +1 and the nucleotide 5′

to +1 is numbered −1. There is no nucleotide zero (0). All numbering is based
on the ATG of the reference sequence. If a nucleotide sequence is displayed in
codons, then the protein numbering is applied.
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For amino acid-based alignments, the first codon of the mature protein, after
cleavage of the signal sequence, is labeled codon 1, and the codon 5′ to this
is numbered −1. In all sequences, the following conventions are used. Where
identity to the reference sequence is present, the base will be displayed as a
hyphen (-). Nonidentity to the reference sequence is shown by displaying the
appropriate base at that position. Where an insertion or deletion has occurred,
this is represented by a period (.). If the sequence is unknown at any point in
the alignment, this is represented by an asterisk (∗). In protein alignments for
null alleles, the “Stop” codons are represented by an X. In protein alignments,
sequence following the termination codon is not marked and appears blank.

The flexibility of the new alignment tool means that unlike previous align-
ments you can now display a small subset of sequences against an allele of
your choice, using a number of display options. The previous text alignments
are still requested and as a result are available from the ANRI website and in
a zipped file in the FTP directory.

2.4.1.4. Cell Search Tools

The IMGT/HLA Database contains an entry for the source material of each
allele submitted to the database. This source material is normally in the form
of a cell line or DNA from which each HLA allele in the database was isolated
and characterized. The information contained within this data set can be used
independently from the HLA allele data, as well as through more obvious links
from the allele entries. In order to promote use of this data set and to provide a
resource listing the HLA types of known cell lines, a specialized source tool has
been developed. The cell query tool is used to interrogate this accompanying
cell database. The interface can be used without prior knowledge of which
alleles are linked to the cells or from the allele reports. The interface allows the
user to search on known cell fields, in a similar manner to SRS and flat files.
The cells all have a primary name and accession number that are unique within
the database. Searching these fields can easily retrieve cells. As some cells are
sequenced by different groups, or certain names are repeated, the database also
contains a list of aliases for each cell. These aliases are automatically searched
whenever the cell name field is queried. Other cell fields that are available
for searching include the HLA typing, serology, ethnic origin, geographical
location, sex, consanguineous status, workshop numbers, and availability from
a number of cell repositories. The search tool provides an interface that can be
used constructing both simple queries, for example, a cell name, and complex
queries that is, “A∗0101” positive “Caucasoid” “males.”
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The output page for the cell search tool lists all the relevant hits. These are
displayed with their primary name, aliases, and accession number, which links
to the individual entry. The individual entry for each cell details a large amount
of information on the cell including any typing and serological information.
The entry also provides a list of all alleles for which a cell has been sequenced.
This may vary from the typing profile originally submitted by the author due
to a number of reasons: incomplete typing, unknown allele designations, or
additional information from other groups. There are no “virtual” cells as with
sequence entries, but if a number of groups have sequenced the same cell then
the information can be pooled into a single entry. The cell database currently
contains around 3,540 cells.

2.4.1.5. SBT Ambiguities

The IMGT/HLA Database contains the data to provide a number of tools to
support the work of tissue typing laboratories. The use of SBT as a method for
defining the HLA type is well documented (33). Most SBT strategies currently
employed use the exon 2 and exon 3 sequences for HLA class I analysis and
exon 2 alone for HLA class II analysis. Due to the heterozygous nature of the
SBT analysis, the combinations of many pairs of alleles may give an ambiguous
typing result. In order to aid in analysis, the database makes available a list of
all alleles that are identical over exons 2 and 3 for HLA class I and exon 2
for HLA class II. In addition, all ambiguous results obtained when using the
alleles included in this release are also included. This information is presented
on the website in a portable document format (PDF) or Excel spreadsheets.
This document can then be easily downloaded or printed out for reference.
These data are updated with each release of the database to ensure that the
combinations are up-to-date.

2.4.1.6. HLA Dictionary and Search Determinants

The IMGT/HLA Database allows investigators to retrieve information from
the HLA Dictionary (34). This dictionary presents the serological equivalents
of HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-
DRB5, and HLA-DQB1 alleles. The data summarizes equivalents obtained by
the WHO Nomenclature Committee for Factors of the HLA System, the Interna-
tional Cell Exchange (UCLA), the National Marrow Donor Program (NMDP),
the 13th International Histocompatibilty Workshop, recent publications, and
individual laboratories.
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To complement the HLA Dictionary, details of the search determinants used
by different bone marrow registries are also stored in the database. Registries
and cord blood banks around the world collect and store the HLA types of
volunteers in order to identify matched unrelated donors for patients requiring
hematopoietic stem cell transplantation (35). The HLA assignments of volun-
teers are received in many formats depending on whether the types were
obtained by serology or by DNA-based methods and by the panel of reagents
used in the assay, which determines the resolution of the test results (high
vs. intermediate vs. low resolution). Registries must take these diverse assign-
ments and identify which of them is most likely to actually match the HLA
assignments of a searching patient. This comparison is usually facilitated by the
conversion of assignments to “search determinants” before matching algorithms
are performed.

2.4.1.7. Sequence Submissions

In addition to providing HLA sequences for retrieval, the IMGT/HLA
website also provides the tools for submitting both new and confirmatory
sequences to the WHO HLA Nomenclature Committee. This is now the only
accepted method for submitting new sequences. Submissions are processed,
which incorporates automated analysis and annotation of the sequence, and
then given an official name, before being loaded into the IMGT/HLA Database
and included in the monthly nomenclature reports (21). The submission tool
can be used for both new and confirmatory sequences and is capable of
holding confidential entries until a set time, thus allowing alleles to be
named before publication. The submission of new HLA sequences to the
IMGT/HLA Database does not replace the submission of these sequences to
EMBL/GenBank/DDBJ, as the submission criteria state that the sequences must
also have been submitted to these databases.

2.4.2. Other tools

The IMGT/HLA Database provides access to a number of other tools and
facilities. These include a public FTP server. The FTP server contains the
HLA sequences in a number of common formats that can then be downloaded
directly. The FTP directory includes all the IMGT/HLA flat files and full
documentation to accompany these. All nucleotide and protein sequences are
provided in the three common sequence file formats: FASTA, PIR, and MSF.
These file formats are accepted by most sequence analysis programs, for
example, Clustal, GeneDoc, and GCG.
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2.4.3. Documentation

The IMGT/HLA Database also includes documentation to aid and support
users with the tools and concepts behind the database. Each tool is accompanied
by a help page that details all the options available and breaks down the output
into individual fields to aid interpretation. Documentation is also provided for
some of the external tools such as BLAST to aid new users.

The second section of the documentation covers the quarterly releases. Each
release is accompanied by a number of text documents. These update the user
with the contents of each release and provide explanations of file formats.
Also included is a version report. This file details all new alleles included in
each release. Details of any corrections or extensions to sequences since the
last release are also included. This is particularly important as it ensures that
users are notified of any changes in the alignments. Changes are made when
additional sequence for partially sequenced alleles is submitted, or if an error
in a published sequence is reported. The version report also includes the names
of any deleted alleles. The deletion of an allele is a rare event but can happen
when a sequence is shown to be in error.

3. Conclusions
IMGT/HLA Database provides a centralized resource for everybody inter-

ested, clinically or scientifically, in the HLA system. The database and accom-
panying tools allow the study of all HLA alleles from a single site on the
World Wide Web. It should aid in the management and continual expansion of
HLA nomenclature, providing an ongoing resource for the WHO Nomenclature
Committee.
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Appendix: Access and Contact
IMGT/HLA Homepage: http://www.ebi.ac.uk/imgt/hla/
IMGT/HLA FTP Site: ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/
Contact: hladb@ebi.ac.uk
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IPD
The Immuno Polymorphism Database

James Robinson and Steven G. E. Marsh

Summary

The Immuno Polymorphism Database (IPD) (http://www.ebi.ac.uk/ipd/) is a set of specialist
databases related to the study of polymorphic genes in the immune system. IPD currently consists
of four databases: IPD-KIR, contains the allelic sequences of killer cell immunoglobulin-like
receptors (KIRs); IPD-MHC, a database of sequences of the major histocompatibility complex
(MHC) of different species; IPD-HPA, alloantigens expressed only on platelets; and IPD-ESTAB,
which provides access to the European Searchable Tumour Cell Line Database, a cell bank
of immunologically characterized melanoma cell lines. The IPD project works with specialist
groups or nomenclature committees who provide and curate individual sections before they are
submitted to IPD for online publication. The IPD project stores all the data in a set of related
databases. Those sections with similar data, such as IPD-KIR and IPD-MHC, share the same
database structure.

Key Words: KIR; MHC; nomenclature; sequences; alleles; database

1. Introduction
The Immuno Polymorphism Database (IPD) is a set of specialist databases

related to the study of polymorphic genes in the immune system. The
IPD project works with specialist groups or nomenclature committees, with
each curating a different section of the project. IPD currently consists
of four databases: IPD-KIR, contains the allelic sequences of killer cell
immunoglobulin-like receptors (KIRs); IPD-MHC, a database of sequences of
the major histocompatibility complex (MHC) of different species; IPD-HPA,
alloantigens expressed only on platelets; and IPD-ESTAB, which provides
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access to the European Searchable Tumour Cell Line Database (ESTDAB), a
cell bank of immunologically characterized melanoma cell lines. Access to all
sections of the IPD database is through the homepage (see Fig. 1).

Fig. 1. The IPD HomePage. The IPD HomePage provides access to the component
databases: IPD-KIR, contains the allelic sequences of killer cell immunoglobulin-like
receptors (KIRs); IPD-MHC, a database of sequences of the major histocompatibility
complex of different species; IPD-HPA, alloantigens expressed only on platelets; and
IPD-ESTAB, which provides access to the European Searchable Tumour Cell Line
Database (ESTDAB).
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The study of the immune system constitutes many different complex areas
of research. The aim of the IPD Database project is to provide a centralized
resource for information pertaining to polymorphic genes of the immune
system, by coupling the expertise of various research groups or nomenclature
committees with the informatics experience of the HLA Informatics Group at
the Anthony Nolan Research Institute. The individual experts or nomenclature
committees are established within their own fields; each has a role in assessing
the quality and validity of new data submitted to their own section of the
database. This may be in the identification and naming of new alleles based on
the submission of new sequences to generalist databases such as the European
Molecular Biology Laboratory’s nucleotide Database (EMBL), the National
Center for Biotechnology Information’s GenBank, and the DNA DataBank of
Japan (DDBJ) (1–3), or in the collation and validation of data from a variety of
different cell characterization methods, such as the cases for the IPD-ESTDAB
database. The resulting data sets held within this specialist system differ from
that available in more generalist databases in its quality and in the further
curation by the experts in the relevant field. This has been discussed in more
detail in Chapter 3. The result being the specialist database should be treated
as the most reliable and accurate source of information, this is particularly
important when it comes to the sequences of polymorphic genes.

One advantage of using a centralized system is the ability to share or reuse
elements of database structure, when dealing with similar data sets. Much of
the database structure of IPD-KIR and IPD–MHC sections are shared with the
IMGT/HLA Database. This has also enabled cross database implementation of
some of the core tools, particularly those for data analysis, submission, and
retrieval.

2. IPD Projects
2.1. IPD-KIR

The KIRs are members of the immunoglobulin super family (IgSF) formerly
called killer-cell inhibitory receptors. KIRs have been shown to be highly
polymorphic at both the allelic and haplotypic levels (4). They are composed
of two or three Ig domains, a transmembrane region and cytoplasmic tail,
which can in turn be short (activatory) or long (inhibitory). The leukocyte
receptor complex (LRC), which encodes KIR genes, has been shown to
be polymorphic, polygenic, and complex in a manner similar to the MHC.
Because of the complexity in the KIR region and KIR sequences, a KIR
Nomenclature Committee was established in 2002 to undertake the naming
of KIR allele sequences. The first KIR Nomenclature report was published
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in 2002 (5), which coincided with the first release of the IPD-KIR database.
To aid in the analysis and naming of new alleles, an online submission tool
is provided on the IPD-KIR website. New alleles are added to the database
once they have successfully completed the submission procedure and their
quality assured. Periodic new releases of the database contain newly submitted
sequences together with conformations and extensions of those already
available.

The KIR Nomenclature Committee is also involved in the naming of the
complex haplotypes and genotypes currently seen in KIR research. Proposals for
such a nomenclature have been published, but as yet, this nomenclature has not
been implemented, although it is planned to include this data once available. The
online tools available for IPD-KIR include allele queries, sequence alignments,
and cell queries. As the database is based on the work of a nomenclature
committee, the website includes links to a portable document format (PDF) file
of recent nomenclature reports. From the data contained within these reports,
the database is also able to provide individual allele reports (Fig. 2). These
pages contain the official allele name, any previous designations, the EMBL,
GenBank, or DDBJ accession number(s), and a reference linked, wherever
possible, to the PubMed abstract. Where possible additional details on the
source of sequence are also provided. This source material is normally in
the form of a cell line or DNA from which each allele in the database was
isolated and characterized. The information contained within this data set can
be searched independently from the allele data. The cell query tool is used to
interrogate this accompanying cell database. The interface can be used without
prior knowledge of which alleles are linked to the cells or from the allele
reports. The interface allows the user to search on known cell fields. The cells
all have a primary name and accession number that are unique within the
database. As some cells are sequenced by different groups, or certain names are
repeated, the database also contains a list of aliases for each cell. These aliases
are automatically searched whenever the cell name field is queried. Other cell
fields that are available for searching include HLA and KIR typing, serology,
ethnic origin, and geographical location.

The other main use of the database is to view multiple sequence alignments.
Within each IPD section, allele sequences may differ from each other by as little
as a single nucleotide. As previously discussed for IMGT/HLA (see Chapter 3),
these alignments allow a visual interpretation of sequence similarity, so that
polymorphic positions can easily be identified and motifs found in multiple
alleles are also easily identified. The sequence alignments are available via a
link from the section homepage. The interface provided lets the user define a



IPD–The Immuno Polymorphism Database 65

Fig. 2. IPD-KIR Allele Entry. From the data contained within the nomenclature
reports, the database is able to provide individual allele reports. The report shows part
of the KIR3DL1*00101 entry. The underlined text is a link to further information on
the web both within IPD and in external sources such as PubMed.

number of key variables for the alignments, before producing an online output,
which can be printed or downloaded. The first step in any alignment is to
select the locus of interest. The tool provides a drop-down list of all loci.
The selection of a locus automatically updates the list of features that can be
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aligned, as well as the default reference sequence used for the alignment. The
types of feature available for alignment are the nucleotide coding sequence
and individual exons, the signal peptide, mature protein, and full-length protein
sequence. The alignment tool options also allow the user to display a subset of
alleles of a particular locus, omit alleles unsequenced for a particular region, and
align against a particular reference or consensus sequence. The alignment tool
uses standard formatting conventions for the display of sequence alignments.
The alignment tool does not perform a sequence alignment each time it is used,
but it extracts pre-aligned sequences, allowing for faster access.

The alignments adhere to a number of conventions for displaying evolu-
tionary events and numbering. The numbering of the alignments is based on
the sequence of the reference allele. For a nucleotide sequence, the A of the
initiation Methionine codon is denoted nucleotide +1 and the nucleotide 5′

to +1 is numbered −1. There is no nucleotide zero (0). All numbering is based
on the ATG of the reference sequence. If a nucleotide sequences is displayed
in codons, then the protein numbering is applied.

For amino acid-based alignments, the first codon of the mature protein, after
cleavage of the signal sequence, is labeled codon 1 and the codon 5′ to this
is numbered −1. In all sequences, the following conventions are used. Where
identity to the reference sequence is present, the base will be displayed as a
hyphen (-). Non-identity to the reference sequence is shown by displaying the
appropriate base at that position. Where an insertion or deletion has occurred,
this is represented by a period (.). If the sequence is unknown at any point in
the alignment, this is represented by an asterisk (∗). In protein alignments for
null alleles, the “Stop” codons are represented by an X. In protein alignments,
sequence following the termination codon is not marked and appears blank. The
flexibility of the new alignment tool means that unlike previous alignments you
can now display a small subset of sequences against an allele of your choice,
using a number of display options. Figure 3 shows the alignment tool used for
the IPD-KIR section.

2.2. IPD-MHC

The MHC sequences of many species have been reported in the liter-
ature and are represented in the generalist sequence databases. For some
species or related species groups, such as the bovines, non-human primates,
and dog, there have been efforts to use a standardized nomenclature system
and establish comprehensive data sets (6–8). The availability of these data
sets for use by other groups has often been limited by a lack of informatics
resources available to the researchers compiling the data sets. The aim of
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Fig. 3. Alignment Interface. The alignment interface provides a user-friendly method
of viewing sequence alignments with output options easily selected.

the IPD-MHC database is to address this issue and provide a centralized
database that will facilitate the comparative analysis of these sequences that are
highly conserved between different closely related species (9). In addition, the
formation of the International Society of Animal Genetics (ISAG)/International
Union of Immunological Society (IUIS)-Veterinary Immunology Symposium
(VIC) Comparative MHN Nomenclature Committee, which brings together
representatives of many nomenclature committees covering different species,
will aid in the establishment of standardized nomenclature practices across
species (10).

For each species, there are differences in the spectrum of data covered, but
all sections provide the core nomenclature pages and sequence alignments. The
nomenclature and alignments follow a structure similar to that of the IPD-KIR
section, and the same basic tools are used in both sections. Some nomen-
clature committees may provide additional information, but the core compo-
nents of any nomenclature reported are the allele names, accession numbers, and
publications.

Currently, the IPD-MHC sequence alignments are limited to species-specific
alignments; however, we are working to allow cross-species alignments and
the inclusion of human sequences from the IMGT/HLA Database (11) for
comparative purposes. The alignments for non-human primates can use a human
HLA sequence as a reference sequence but this is only a single sequence in
each alignment. The sequence alignment tool is similar to that used in the
IPD-KIR database, see Fig. 3, and it is possible to define the output parameters
to display the sequence alignments in various formats (Fig. 4 ). The IPD-MHC
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Fig. 4. Alignment formats available from IPD-MHC. The examples shown are all
alignments of DRB alleles from different species. In these alignments, a dash (–)
indicates identity to the reference sequence and an asterisk (∗) denotes an unsequenced
base. The first two alignments (A and B) show the nucleotide sequences of sheep
(Ovis aries) DRB1 alleles using different display parameters. The second set (C and
D) shows chimpanzee (Pan troglodytes) Patr-A protein sequences. The same sets of
alleles are used for both C and D, but in D, the chimpanzee sequences are aligned
against a human reference sequence (HLA-A*01010101).

Database also contains a submission tool for online submission of new and
confirmatory sequences to the appropriate nomenclature committee.

The first release of the IPD-MHC database involved the work of groups
specializing in non-human primates, canines, and felines and incorporated all
data previously available in the IMGT/MHC Database (12). Since this release,
sequences from cattle, fish, rat, sheep, and swine have been added; work is
also underway on the inclusion of chicken and horse sequences.

2.3. IPD-HPA

Human platelet antigens (HPAs) are alloantigens expressed on platelets,
specifically on platelet membrane glycoproteins. These platelet-specific
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antigens are immunogenic and can result in pathological reactions to transfusion
therapy. The HPA nomenclature system was adopted in 1990 (13,14) to
overcome problems with the previous nomenclature. Since then, more antigens
have been described, and the molecular basis of many has been resolved.
As a result the nomenclature was revised in 2003 (15) and included in the
IPD project. The IPD-HPA section contains nomenclature information and
additional background material. The different genes in the HPA system have
not been sequenced to the same level as some of the other projects, and so
currently only single-nucleotide polymorphisms (SNPs) are used to determine
alleles. This information is presented in a grid of SNP for each gene. The
HPA Nomenclature Committee hopes to expand this to provide full sequence
alignments when possible. The IPD-HPA section also provides data on the
frequency of different HPA alleles in a number of populations. These tables
contain allele frequencies as well as the ethnic origins of the samples, typing
methodology, and relevant publications. This table is regularly updated and is
now considered one of the main resources for HPA frequency data (Fig. 5).

2.4. IPD-ESTDAB

IPD-ESTDAB is a database of immunologically well-characterized
melanoma cell lines. The database works in conjunction with the ESTDAB
cell bank, which is housed in Tübingen, Germany and provides access to the
immunologically characterized tumor cells (16). The ESTDAB consortium is
made up of seven laboratories from countries around the European Union,
with each lab responsible for the generation of data on a prearranged set of
immunological or genetic markers that reflect the laboratory’s expertise and
technical specialities. The central facility and physical location of the cell bank
was established at the Centre for Medical Research (ZMF) of the University of
Tübingen in Germany, where cells lines were gathered from a variety of sources
around Europe, Australia, and the United States of America. Since the project
began, cells have been acquired as they become available, this has meant in
particular that a number of cell lines have been sourced from melanoma samples
collected from patients entered into clinical immunotherapy trials associated
with ESTDAB’s sister project, OISTER (Outcome and Impact of Specific
Treatment in European Research on Melanoma, http://www.dkfz.de/oister/).
Consequently, ESTDAB now provides access to many more cell lines of
melanoma origin than are available from other non-specialist cell banks.

The IPD-ESTDAB section of the website provides an online search facility
for cells stored in this cell bank. This enables investigators to identify cells
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Fig. 5. IPD-HPA frequency data. The IPD-HPA database contains frequency data
on different HPA alleles. A selection of data is shown. Further columns can be added
to the table by selecting the appropriate column from the menus above the main report.
The columns already selected are identified by a tick mark in the relevant box.

possessing specific parameters important for studies of immunity, immuno-
genetics, gene expression, metastasis, response to chemotherapy, and other
tumor biological experimentation. The search tool allows for searches based
on a single parameter, or clusters of parameters on over 250 different markers
for each cell. The detailed reports produced can then be used to identify cells
of interest, which can then be obtained from the cell bank. Some elements
of the design of the ESTDAB database are borrowed from that used in the
IMGT/HLA Database (see Chapter 3).

There are several ways to search the ESTDAB database, all of which are
based on a system of expanding lists and all of which return results data in a
format identical to that presented in the search tools. Using the quick-search
tool can find data based on an individual cell line’s name or unique accession
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number. Because of the number of markers studied by the ESTDAB consortium,
the main search tool is split into two sections. The primary search tool allows
users to find cells with a particular HLA genotype or surface expression pattern,
or otherwise according to the cell’s expression of tumor-associated antigens or
secretion of cytokines (Fig. 6). These primary search determinants are more
likely to return positive hits than the remaining markers which are included in
a second search tool, given the current data set available those factors included
in the secondary search tool, given the current data set available. Both search
tools allow the use of the Boolean operators “AND” and “OR” when searching
for combinations of markers. A complete list of markers studied in ESTDAB is
available in the data dictionary along with information on the acceptable values
for their related fields. Protocols and/or information sufficient to reproduce the
experimental conditions applied in the characterization of the ESTDAB cells is
available in the help section for each methodology. Contributing laboratories
can be contacted directly for more information.

Fig. 6. IPD-ESTDAB cell entry. Part of a cell report available from IPD-ESTDAB.
The figure shows only the general information on a cell and some of the high resolution
HLA typing. Each cell entry can contain data on over 250 individual markers.
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3. Discussion
The IPD project provides a new resource for those interested in the study

of polymorphic sequences in the immune system. By accommodating related
systems in a single database, data can be made available in common formats
aiding use and interpretation. As the projects grow and more sections are
added, the benefit of having expertly curated sequences from related areas
stored in a single location will become more apparent. This is particularly
true of the IPD-MHC project, which already contains 2,270 sequences from
over 50 different species, where cross-species studies will be able to utilize
the high-quality sequences provided by the different nomenclature committees
in a common format, ready for use. The initial release of the IPD Database
contained only four sections and a small number of tools; however, as the
database grows and more sections and species are added, more tools will be
added to the website. We plan to use the existing database structures to house
data for new sections of the IPD project as they become available. Data will
also be made available in different formats to download from the website and
ftp server and included into Sequence Retrieval System (SRS), Basic Local
Alignment Search Tool (BLAST), and FAST-All (FASTA) search engines at
the European Bioinformatics Institute (17).
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Appendix: access and contact
IPD Homepage: http://www.ebi.ac.uk/ipd/
IPD-KIR Homepage: http://www.ebi.ac.uk/ipd/kir/
IPD-MHC Homepage: http://www.ebi.ac.uk/ipd/mhc/
IPD-HPA Homepage: http://www.ebi.ac.uk/ipd/hpa/
IPD-ESTDAB Homepage: http://www.ebi.ac.uk/ipd/estdab/
Contact: ipd@ebi.ac.uk
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If you are interested in contributing to the project, there are specific
guidelines for the inclusion of new sections, and interested parties
should contact Dr. S. G. E. Marsh, (E-mail: marsh@ebi.ac.uk) for further
information.
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SYFPEITHI
Database for Searching and T-Cell Epitope Prediction

Mathias M. Schuler, Maria-Dorothea Nastke, and Stefan Stevanović

Summary

Reverse immunology has been used for about 12 years in order to identify T-cell epitopes from
pathogens or tumor-associated antigens. In this chapter, we discuss the advantages and pitfalls of
T-cell epitope prediction compared to classical experimental procedures such as epitope mapping
and cloning experiments. We introduce our three established programs, SYFPEITHI, PAProc, and
SNEP, which are freely accessible at no cost in the World Wide Web for the prediction of either
HLA–peptide binding or proteasomal processing of antigens. We demonstrate the performance
of our epitope prediction programs with several examples and in comparison to other epitope
prediction programs available. We also reflect the actual possibilities and limitations of such
computer-aided work.

Key Words: MHC; peptide motif; T-cell epitope; SNP; minor histocompatibility antigen;
epitope prediction; CMV; HLA; proteasome; reverse immunology

1. Introduction
Right from the start when allele-specific peptide motifs were first identified

(1), rules for major histocompatibility complex (MHC)-mediated antigen
presentation were exploited and applied to the prediction of viral or bacterial
T-cell epitopes (2,3). In the meantime, the peptide motifs of most MHC alleles
that are widely expressed in mice and humans have been determined, and
prediction strategies and programs have been developed. With the existing
possibilities of the World Wide Web, epitope prediction programs can now
be found at many different sites, and—most important—many of them are
available without any restriction and at no cost for the scientific community.
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The first program of this kind has been established by Ken Parker’s group (4).
“BIMAS”(bimas.dcrt.nih.gov) still represents the classical epitope prediction
program which contains most of the classical mouse peptide motifs and also
a broad range of human MHC class I motifs. The next program to follow
was “SYFPEITHI” (www.syfpeithi.de) (5), which offers prediction of epitopes
for some MHC class II restrictions in addition to MHC class I predictions.
After the millennium, many more programs evolved and became available via
the World Wide Web. At present, there are more than ten programs freely
available and others with restricted access. The latest program is “SNEP”
(www.elchtools.de/SNEP) (6), a program which allows the prediction of
single-nucleotide polymorphism (SNP)-derived T-cell epitopes and has been
developed together with Pierre Dönnes from Oliver Kohlbacher’s group at the
Wilhelm-Schickard-Institute for Computer Science. Pierre Dönnes developed
also an MHC class I peptide prediction program called SVMHC (7).

Apart from algorithms that predict the mere presentation of peptide sequences
(which most basically means binding of peptides by a given MHC allotype),
another checkpoint of antigen processing has caught the eye of biomathemati-
cians: the proteolytic activities of the proteasome. Because the majority of
T-cell epitopes presented by MHC class I molecules have to be processed by
this multimeric multispecific protease complex, several groups investigated the
rules of such processing events. Either by digesting short model substances that
releasechromophoresafterbeingcleaved, shortpeptidesequencesof20–30amino
acids that also may contain known T-cell epitopes, or complete proteins whose
peptide fragments are then separated and analyzed, the preference of protea-
somal processing was analyzed and served as a basis for prediction algorithms.
Such a prediction program called “PAProC” (www.paproc.de) (8) has been
developed in our department together with Karl-Peter Hadeler’s biomathematic
group In this chapter, we will discuss the advantages and disadvantages of epitope
prediction compared to experimental methods and then describe some of the most
prominent prediction procedures for human cytomegalovirus (HCMV) T-cell
epitope identification by MHC binding and/or proteasomal processing predic-
tions. We will introduce some of the more widely used programs and compare
the performance of these by “predicting” in a retrospective way a number of
well-known T-cell epitopes from the immunodominant pp65 protein of HCMV.

2. Epitope Identification
2.1. Epitope Mapping Using Synthetic Overlapping Peptides

This method for the determination of T-cell epitopes is based on the stimu-
lation of fresh peripheral blood mononuclear cells (PBMCs) with synthetic
peptides, usually applied as pools, which represent the complete sequence of
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a viral antigen and therefore contain all potential CD8 T-cell epitopes of the
respective antigen. The peptide pool may, for example, consist of peptides with
a length of 15 amino acids whereby at least 9 amino acids overlap between
neighboring peptides (9). T cells recognizing epitopes contained in these pools
have the ability to secrete large amounts of interferon � (IFN-�), which can
be measured and quantified by flow cytometry. Because the peptide pools
provide all possible CD8 T-cell epitopes in the protein, this strategy depicts
an approach which is not dependent on HLA types. Therefore, this strategy
represents a useful tool in clinical terms with the option to record T-cell
response to a complete peptide pool over time without knowing the respon-
sible epitope(s) and presenting HLA molecule(s). The enormous effort involved
in peptide preparations is partly compensated by the use of 15-mer peptides
instead of smaller ones, which reduces the number of synthesized peptides. On
the other hand, the use of 15-mer peptides in a search for MHC class I-presented
peptides involves a certain risk of losing relevant epitopes because the affinity of
15-amino acid peptides is reduced by a factor of 10–1,000 if compared to optimal
MHC class I ligands. For this reason, the peptides have to be applied in rather
high concentrations (> 1�M), which often causes irrelevant signals by unspe-
cific interactions–relevant T-cell epitopes should easily work at concentrations
of 10 nM or less. Another critical point is the potential competition between
peptides that represent relevant epitopes in the pool and peptides that are nonrel-
evant binders. However, such competition effects do not seem to play a major
role if the peptides are applied in about equimolar concentrations, as has been
demonstrated by systematic studies using combinatorial peptide libraries (10).

After a 15-mer peptide has been defined as a target of T-cell recognition, the
optimal epitope and the corresponding HLA restriction still have to be defined;
otherwise, this finding remains useless information. At this point, either time-
consuming, tedious truncation variant analyses have to be carried out or epitope
prediction has to be employed to define the optimal T-cell epitope contained
in the 15-mer peptide.

2.2. Epitope Determination by Cloning Experiments

By this strategy, PBMCs of HCMV-seropositive donors are stimulated with
virion-infected fibroblasts to increase the precursor frequency of virus-specific
T cells (11). With a subsequent limiting dilution, including a depletion of
CD4+ cells and cloning CD8+ cytotoxic T lymphocytes (CTLs), a further
characterization of the specific allelic restriction and epitope specificity is
possible. The transfection of truncated variants of the original viral gene allows
one to narrow down the region of the gene that is recognized by the T cells.
As for the overlapping peptides, the final steps of epitope identification have to
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employ stepwise truncation of minigenes which leads to an enormous amount
of plasmids to be generated and tested (12). For this reason, epitope prediction
usually represents the method of choice at the final stage of all strategies.

2.3. Epitope Prediction and Verification

After the discovery that natural MHC ligands usually share an allele-specific
motif, the path for an exact prediction of T-cell epitopes, especially for MHC
class I molecules, was paved. The determination of MHC class II epitopes
proved to be more difficult than with the MHC class I counterpart because of
the variable length of the MHC class II ligands and more degenerated anchor
positions.

During the past decade, several strategies for the determination of peptide
motifs have been published. One possibility is to collect and register infor-
mation about natural ligands, with individual ligands being analyzed on an
individual basis or as pools representing the entity of peptides being presented
by a distinct MHC allotype. This characterization can be done by Edman
degradation (13–15) or tandem mass spectrometry (MSMS) (16). The resulting
so-called natural ligand motifs contain information about the natural peptide
repertoire presented by a certain MHC molecule. SYFPEITHI depicts such
a computational predictive method of MHC–peptide binding and is based on
allele-specific peptide motifs (5). Prediction of MHC–peptide binding can also
base on experimental results of binding assays that are transformed into quanti-
tative matrices (4,17). The most prominent example of this kind of epitope
prediction is the Bioinformatics and Molecular Analysis Section (BIMAS)
matrix that underlies measurements of half-time dissociation rates of peptide–
HLA complexes (4). Also, structural information may form the basis of the
data set used for epitope prediction. The structures of MHC–peptide complexes
obtained by X-ray crystallography design a basis for computer models of
certain MHC molecules (18). All these data sets are used for different compu-
tational predictions that are based on predictive algorithms. In some cases, the
database works with motif matrices deduced from natural ligands. These motif-
based algorithms are quite simple programs that regard each single amino acid
position in a peptide. Therefore, these programs are called “specific position
scoring matrices” (SPSM). Otherwise, artificial neural networks (ANN) (19)
are in use which afford the consideration of amino acid preferences that depend
on the properties of amino acids in other positions of the peptides. ANNs
were successfully applied to the prediction of MHC class I binding peptides
(19–21). An advantage of ANN is that generalization and capturing relation-
ships within data are possible, while at the same time, a tolerization and a
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filtration of erroneous or noisy data takes place. Recapitulating each prediction
method has its advantages and drawbacks. Binding motifs encode the most
important rules of MHC/peptide interaction, but do not generalize well. Quanti-
tative matrices are able to predict large subsets of binding peptides, but they are
not adaptive or self-learning, what often requires a redesigning of the matrix
for integration of new data. These matrices also cannot handle nonlinearities
within data and because of this may miss distinct subsets of binders. ANNs can
deal with such nonlinearity and are adoptive and self-learning, but to guarantee
this, a large amount of preprocessed data are required. There is one major
advantage of epitope prediction if compared to other strategies: it is a quick and
simple procedure—once the prediction program is available—requiring only
a small set of peptides to be synthesized and tested, and ending up directly
with the optimal epitope. The availability of a peptide motif, however, is an
important prerequisite. The disadvantage of epitope prediction lies in the fact
that epitopes might be missed by the prediction because they do not fit well with
the peptide motif under investigation. Next to the prediction of epitopes, which
focus mainly on MHC-peptide binding, there is the possibility of performing
predictions of antigen processing which involve a certain knowledge of
cellular components, such as the proteasome. For the prediction of proteasomal
cleavages, different algorithms were created. These algorithms are based either
on published peptide cleavage data (22) or consist of an evolutionary algorithm
trained on cleavage data of digests of a whole protein substrate (23,24). One
of these programs using data of processing is PAProC, the first version of
which is based on experimental cleavage data of a small set of proteins by
human and yeast proteasomes (8,25). PAProC allows for the prediction of
cleavages carried out by the constitutive proteasome; a second version has
been announced which will also enable cleavage predictions if immunoprotea-
somes; a trial version is already available. Another program for proteasomal
cleavage prediction is NetChop (www.cbs.dtu.dk/services/NetChop) (24), based
on a similar data set as PAProC. Recently, the network MAPPP (www.mpiib-
berlin.mpg.de/MAPPP) has been made available publicly as an additional
proteasomal cleavage prediction program. The verification of the predicted
epitopes is achieved by the identification of T cells that recognize one of the
candidate epitopes. A successful finding of T cells mirrors the correct prediction
of a T-cell epitope because the T cells recognize the naturally processed epitope
in an HLA-restricted fashion. T cells specific for HCMV epitopes are usually
prepared from PBMC of healthy HCMV-seropositive donors, but sometimes
also from patients suffering from HCMV reactivation. Such T cells have already
been primed in vivo and are readily detected by tetramer staining, lytic activity,
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proliferation, or cytokine production. As the CTL response against HCMV
epitopes is among the most vigorous immune responses known in humans,
there is usually no need to restimulate T cells in vitro, but immunodominant
responses can be analyzed ex vivo.

2.4. Prediction of T-cell Epitopes From HCMV Antigens

It is not surprising that the majority of MHC class I-restricted T-cell epitopes
known today have been determined by means of epitope predictions. The
programs are comparatively easy to use, they work very quickly, and the results
are reliable to a high degree. For instance, SYFPEITHI guarantees that in more
than 80% of the predictions, the relevant epitope can be identified. Two criteria
have to be fulfilled for epitope prediction: the sequence of interest and the
desired peptide motif must be known.

• The sequence of interest. With the steadily growing number of entries in the protein
and nucleotide databases, the availability of sequences poses no serious problem.
Many genomes of pathogens have been sequenced completely, and most protein
or gene sequences can be accessed without any problems in any of the famous
databases such as Genbank, EMBL nucleotide database, SWISS-PROT, or others.
Two problems may arise if the prediction of new T-cell epitopes has to be carried
out. First, the knowledge of immunodominant proteins is inevitable. HCMV, with
its rather large genome coding for more than 200 proteins, represents a special
problem for epitope prediction. Only if we know that the immune response focuses
on a small set of antigens—mainly pp65, but also some of the glycoproteins, the
immediate-early protein, and pp150—epitope prediction is feasible. In fact, it is
not the prediction from large genomes itself that will cause problems, but as a
result, hundreds of interesting candidate peptides will appear in the listing, and the
verification of the predicted peptides by experimental work will hardly be possible.
The second problem lies in the occurrence of different viral strains. The most widely
used HCMS strain is AD169, from which most epitopes are derived. In order to
deal with naturally occurring infections, the variations in protein sequences between
different viral strains have to be considered. Usually, researchers and clinicians try to
identify T-cell epitopes in conserved regions of immunodominant antigens in order
to obtain precious tools for diagnostic therapeutic purposes.

• The peptide motif. Although the rules of peptide presentation have been published
for the most prominent HLA allomorphs, there are some problems encountered
with the application of prediction programs. First of all, the correct designation
of the HLA allele of interest has to be considered. In the prediction programs (as
well as in literature), there is some disagreement with respect to HLA nomen-
clature. While the modern naming of HLA alleles demands four-digit typing,
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HLA-A*0201 for example, which precisely defines the protein sequence of this
peptide-presenting receptor, very often imprecise and old-fashioned names such as
HLA-A2 can still be found. The scientist who seeks epitope prediction in the web
may well be puzzled by the wide offer of several variants of HLA-A*02 epitope
prediction.

A number of CTL epitopes have been published from sequences of HCMV
antigens. Table 1 shows a listing of epitopes derived from the pp65 protein and
recognized by cytotoxic T cells in the context of HLA class I molecules. The
epitopes compiled here have been defined by one of three strategies discussed
above: by using overlapping synthetic peptides, by cloning experiments, or by
epitope prediction. Importantly, we are convinced that not all of the epitopes
described so far have the optimal length, as we expect T-cell epitopes to have
8–11 amino acids in the overwhelming majority of cases.

In the following section, the various prediction programs will be introduced
and examples of their performance will be demonstrated using the peptides
from Table 1.

Table 1
Cytotoxic T-lymphocyte (CTL) epitopes from pp65 of HCMV strain AD169

HLA Sequence Protein/position Optimal Reference

A*0101 YSEHPTFTSQY pp65 363–373 + (12)
A*0201 NLVPMVATV pp65 495–503 + (26)
A*1101 GPISGHVLK pp65 16–24 + (27)
A*2402 QYDPVAALF pp65 341–349 + (28)

VYALPLKML pp65 113–121 + (29)
FTSQYRIQGKL pp65 369–379 (12)

A*6801 FVFPTKDVALR pp65 186–196 (12)
B*0702 TPRVTGGGAM pp65 417–426 + (27)

RPHERNGFTVL pp65 265–275 + (12)
B*3501 DDVWTSGSDSDEELV pp65 397–411 (26)

IPSINVHHY pp65 123–131 + (30)
B*3502 FPTKDVAL pp65 188–195 + (12)
B*38 PTFTSQYRIQGKL Pp65 367–379 (12)
B*4402 EFFWDANDIY Pp65 512–521 (12)

For a number of HLA restrictions, epitopes have been reported. In column 4, the “+” indicates
that the epitope fits the reported peptide motif and probably cannot be elongated or truncated
any further for optimal T-cell recognition.
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3. Available Programs: An Overview
3.1. SYFPEITHI

SYFPEITHI is a database for MHC ligands and peptide motifs for MHC class I
and class II as well as for humans and other species such as mouse, rat, cattle, and
chicken. The database contains MHC–peptide motifs, MHC ligands, and T-cell
epitopes. The prediction of T-cell epitopes is based on published motifs derived
from pool sequencing and analysis of individual natural ligands, and especially
considers amino acids in anchor and auxiliary anchor positions, as well as other
frequent amino acids (5). The entries are directly linked to respective sequences of
the EMBL database and publications in PubMed. The algorithm used for epitope
prediction is written in Object Pascal and is based on motif matrices deduced
from refined motifs. In a two-dimensional data array, the letters of the amino acid
represent the row index and the position numbers the column index. Any entered
sequence is divided into octamers, nonamers, or decamers. A calculation of the
sum of the scores from the containing amino acids for each oligomer follows. This
process is repeated until the end of the sequence is reached. Different values are
given to the amino acids according to their occurrence in natural ligands. Value 10
is allocated to amino acids which occur frequently in anchor positions, value 8 is
given toaminoacidsbeingpresent inastill significantnumberof ligands,andvalue
6 is assigned to amino acids in auxiliary anchor positions. Less frequent residues
in auxiliary anchor positions have the coefficient 4, and preferred amino acids
have coefficients of 1–4, depending on the strength of signals in pool sequencing
or the frequency in individual sequences. Finally, there are coefficients of −1
to −3 which are given to amino acids that usually do not occur in the respective
sequence position of natural ligands. Epitope prediction by SYFPEITHI results
in a list of peptides that are presented with high probability by MHC molecules,
as indicated by the reliability of at least 80% in retrieving the most qualified
epitope. This means that the naturally presented epitope should be among the
top scoring 2% of all peptides predicted. Because of the more degenerate peptide
motifs and the variable pocket usage, prediction of MHC class II-restricted T-cell
epitopes turns out to be more complicated. SYFPEITHI as the first website that
offers class I and class II predictions estimates a reliability of approximately 50%.
For this reason, only MHC class I-restricted T-cell epitopes will be discussed in
this chapter.

3.2. SNEP

SNEP is based on the SYFPEITHI prediction algorithms. The program
predicts minor histocompatibility antigens, which are T-cell epitopes containing
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polymorphic residues, from proteins listed in the SWISS-PROT database.
SNEP recognizes polymorphisms and predicts potential T-cell epitopes within a
chosen distance around the polymorphic residue. The predictions are available
for a number of HLA class I and class II allelic products, which allows for a
rapid and precise evaluation of potential minor histocompatibility antigens with
polymorphic antigens. There are two ways of predicting possible minor histo-
compatibility (miHAgs): on the one hand, it is possible to search for specific
proteins and their polymorphisms, and on the other hand, the program enables
the user to enter own sequence and SNP data.

3.3. Other Prediction Methods

The first predictive algorithm that was taken up by the World Wide
Web and is still freely available is BIMAS that was developed by Ken
Parker and colleagues (4). This program was developed using data from
binding studies with synthetic peptide variants and MHC molecules. Inter-
estingly, BIMAS ranks potential MHC binders according to predicted half-
time dissociation of MHC–peptide complexes. Another freely available
prediction program has been placed in the World Wide Web, RANKPEP
(www.mifoundation.org/Tools/rankpep.html), which can be used for the
prediction of peptides binding to MHC class I and MHC class II molecules.
It ranks all possible peptides from an input protein sequence according
to their similarity to a set of peptides known to bind to a given MHC
molecule. Using a position-specific scoring matrix (PSSM), which was
assembled from a collection of aligned peptides binding to that focused MHC
molecule, the similarities are scored. As a special feature, RANKPEP indicates
whether the predicted peptide sequences are probably created by proteasomal
processing. While SYFPEITHI and RANKPEP combine the prediction of
MHC class I and MHC class II epitopes in one program, the PROPRED
programs work separately for MHC class I and MHC class II. PROPRED
(www.imtech.res.in/raghava/propred) (31) is a server for the prediction of
MHC class II binding regions in an antigen sequence using quantitative
matrices that are based on published data from Sturniolo (32). PROPRED-I
(www.imtech.res.in/raghava/propred1) offers the possibility of identifying
MHC class I binding regions in antigens by using 47 MHC I alleles (33).
Also in PROPRED-I, proteasome filters can be selected. The sixth prediction
program mentioned here which is freely available in the World Wide Web
is the HLA Ligand/Motif Database (HLALIG) (hlaligand.ouhsc.edu). It offers
inter alia HLA-epitope binding prediction and peptide amino acid frequency
calculation (34).
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3.4. Prediction Methods Using Data on Processing

Three programs for the prediction of proteasomal cleavages are discussed
here. PAProC is an evolutionary algorithm based on experimental cleavage data
for human and yeast proteasomes. This approach enables the user to predict
proteasomal cleavage sites in amino acid sequences with the possibility of
getting information about the general cleavability of amino acid sequences (cuts
per amino acid) and individual cleavages (positions and estimated strength). In
addition, the website of PAProC offers links, for example to SYFPEITHI, to
combine PAProC with the prediction of MHC class I ligands. Another neural
network for proteasomal cleavage prediction is NetChop, established by Can
Kesmir and colleagues (24). Assuming that MHC class I ligands are not only
produced by the immunoproteasome, the authors enlarged the training set of
MHC class I ligands by including ligands from the MHCPEP and SYFPEITHI
databases. This enlarged data set is able to predict the C-termini of MHC I
epitopes. The third network reported is MAPPP (22), which is able to predict
proteasomal cleavage of proteins into smaller fragments and the binding of
peptide sequences to MHC class I molecules.

4. The Performance of Epitope Prediction Programs,
as Shown by a Retrospective Analysis

In all programs offered via the World Wide Web, the user is asked to enter
or paste sequence of interest and then to select the MHC molecule of choice.
Some programs allow for additional parameters, mostly concerning the output;
two of them also enable the inclusion of proteasomal processing. This section
demonstrates how T-cell epitope prediction from the sequence of pp65 (SWISS-
PROT accession number PO6725) can be achieved, which results are obtained,
and which pitfalls encountered. In our attempt to predict CTL epitopes from
pp65, the published sequences shown in Table 1 were the candidates being
sought. The following steps are necessary:

1. Pasting the pp65 sequence in the respective program window.
2. Selection of the appropriate HLA matrix. As discussed above, this may cause

confusion. In order to find immunodominant CTL epitope NLVPMVATV
(pp65493−503�, predictions entitled HLA-A2, HLA-A2.1, HLA-A*02, or
HLA-A*0201 may be used. If possible, our search was carried out for HLA-A*0201
ligands.

3. Unfortunately, all the programs are not able to simultaneously calculate peptides of
different length. Different matrices are used for prediction of nonamers or decamers,
respectively. Therefore, in order to obtain comprehensive information, the user has
to perform several predictions which will result in a listing of octamers (if possible),
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one listing of nonamers, one of decamers, and so on. Afterwards, the scores of
peptides contained in each listing have to be compared, which results in a combined
table of candidate epitopes. In our example, the predictions of NLVPMVATV were
carried out using the matrices HLA-A*0201 (8 mers), HLA-A*0201 (9 mers),
HLA-A*0201 (10 mers), and HLA-A*0201 (11 mers), if offered by the respective
program, and the score of NLVPMVATV compared to the scores of all predicted
peptides.

4. Often, additional parameters can be selected, for example, the number of top scoring
peptides to be listed. We recommend using the default setting of the programs.

The results of epitope prediction using the programs BIMAS, SYFPEITHI,
RANKPEP, PROPRED-I, and HLALIG are shown in Table 2 . The numbers
indicate the rank of the respective peptide among all potential epitopes within
the protein sequence. For example, the peptide QYDPVAALF is the peptide
with the highest score in the SYFPEITHI prediction. It was placed in position
2 of the ranking by BIMAS and PROPRED-I, in position 4 by the RANKPEP
prediction, and it was not the top scoring 10 peptides, as this roughly corre-
sponds to the top scoring 2% of peptides. The predictions were carried out with
all possible length matrices offered by the programs. Rather often it was not
possible to calculate epitopes because a matrix of the desired length was not
available. As an example, although all programs offer HLA-A*0101-restricted
epitope prediction, none of them was able to calculate 11 mers. For this reason,
the epitope YSEHPTFTSQY was not identified by any of the programs.

From Table 2, we learn that epitope prediction programs work well within
the limits of prediction. The six peptides ranked by BIMAS are all among the
top scoring 2%, for SYFPEITHI predictions the ratio is 4/5, in RANKPEP
4/8 rankings were successful. With PROPRED-I, 5/5 epitopes would have
been predicted correctly, and with HLALIG 3/5. The striking problem of all
programs is indicated by the many “-” annotations: pp65 epitopes often have
a rather unusual length and therefore escape epitope prediction—even one
keeps in mind that some of the published epitopes have no optimal length.
Especially the immunodominant epitopes, YSEHPTFTSQY (HLA-A*0101)
and RPHERNGFTVL (HLA-B*0702), are unusually long: 11-mer peptides are
not covered by any of the prediction programs.

4.1. Proteasomal Processing of pp65 as Predicted
by World Wide Web Programs

The sequence of pp65 from the AD169 strain of HCMV was entered into
the three processing prediction programs PAProC, NETChop, and MAPPP.
In addition, the prediction of cleavage sites as indicated by RANKPEP is
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indicated in Table 3 . All programs offer a wide range of parameters that can
be altered. However, as the normal user is not expected to be an expert in
proteasomal processing, all programs were used with the default settings. It
has to be noted that PAProC, NETChop, and MAPPP are easy-to-use programs
with comprehensive output. In contrast, from RANKPEP or PROPRED-I where
proteasomal processing can be included in epitope prediction, the results of
proteasomal processing are hard to extract. Nevertheless, as a comparison to
the processing algorithms, the RANKPEP results are also shown in Table 3.

It is generally agreed that the C-terminal residues of T-cell epitopes (which
usually serve as anchor residues in allele-specific peptide motifs) have to be
released from the antigen by the proteasome. Although there is still much
discussion whether many internal cleavage sites may destroy potential epitopes
and whether the N-terminal residue of an epitope also has to be cut properly
from the protein sequence, these two features of proteasomal processing are
not regarded as relevant. From experimental evidence we know that peptides
containing internal cleavage sites may nevertheless be presented by HLA

Table 3
Processing prediction using four World Wide Web programs

HLA Sequence PAProC NETChop MAPPP RANKPEP

A*0101 YSEHPTFTSQY + + − +
A*0201 NLVPMVATV + + + +
A*1101 GPISGHVLK − + − +
A*2402 QYDPVAALF − + + −

VYALPLKML + + + +
FTSQYRIQGKL + + − +

A*6801 FVFPTKDVALR + + + +
B*0702 TPRVTGGGAM + + + −

RPHERNGFTVL + + − +
B*3501 DDVWTSGSDSDEELV − + − −

IPSINVHHY + + − +
B*3502 FPTKDVAL + − + +
B*38 PTFTSQYRIQGKL + + − +
B*4402 EFFWDANDIY + + − +

In the sequence of pp65 from HVMC, strain AD169, proteasomal cleavage sites were predicted
and compared to the sequences of known CTL epitopes. Each “+” indicates that the programs
predict a cleave C-terminal to the peptide sequence, which is a prerequisite for epitope generation
by the proteasome.
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molecules because there is no 100% efficiency in the cleavage of any single
cleavage site, and some intact nonamers or decamers may escape destruction
and reach the MHC molecule for subsequent presentation at the cell surface.
On the other hand, proteasomal activity seems not to be important for the
generation of the N-terminal site of T-cell epitopes, which became evident
from two observations. First, the TAP transporter is unable to transport some
of the relevant T-cell epitopes, especially if they carry a proline in the second
position (such as the HLA-B*0702-presented epitopes, TPRVTGGGAM and
RPHERNGFTVL). Such peptides are produced in the cytosol as precursors
with additional amino acids at the N-terminal site. Second, the long-expected
discovery of a trimming protease in the ER proved the hypothesis that precursors
of optimal epitopes may exist in the ER and are trimmed from the N terminus
until they possess the correct length. As can be seen in Table 3, NETChop
performs best with this data set, with only one C-terminal cleavage site missed.
PAProC and RANKPEP would have missed three cleavage sites of HCMV
epitopes, while MAPP predicts only 6 of 14 cleavage sites correctly. Of course,
this small data set cannot be considered for the overall performance of these
programs.

4.2. SNEP-Predicted Possible Minor H Antigens

As an example for the use of SNEP (6), we have predicted two known
miHAgs. Table 4 shows the results of this prediction.

The first one originates from the KIAA0020 protein (35) and has two alter-
native sequences, PTLDKVLEV and RTLDKVLEV. Screening the sequence
stretch around amino acid 149 in KIAA0020 for HLA-A*0201 epitopes, the P
variant scores 22 and the R variant 25. This indicates that the R peptide has a
greater probability of being presented to T cells on the cell surface. Both scores
are above the half of the maximal score of 18 for HLA-A*0201 nonamers. One
other peptide has a score above threshold, ADHPTLDKV, whereas the score
of the alternative ADHRTLDKV meets the threshold precisely. The possibility
that T cells from a donor carrying the R allele recognize the P allele in the
recipient is therefore greater than in lower scored peptides. Table 5 shows the
prediction of another miHAg derived from the BFL-1 protein and presented by
HLA-A*2402 (36). This peptide is, in contrast to PTLDKVLEV, an example
where an amino acid exchange does not influence the score. Therefore, one may
expect no difference in the HLA binding behavior. But because the exchange
takes place at the central sequence position of the DYLQCVLQI peptide,
DYLQYVLQI respectively, T cells could detect it due to its exposure to the
outside of the HLA binding cleft.
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Table 4
Prediction results for KIAA0020

P Score
Above

threshold R Score
Above

threshold Difference

PTLDKVLEL 2 + RTLDKVLEL 25 + 3
HPTLDKVLE 1 HRTLDKVLE 1 0
DHPTLDKVL 9 DHRTLDKVL 9 0
ADHPTLDKV 20 + ADHRTLDKV 18 + 2
SADHPTLDK 10 SADHRTLDK 9 1
KSADHPTLD 4 KSADHRTLD 4 0
YKSADHPTL 15 YKSADHRTL 14 1
LYKSADHPT 6 LYKSADHRT 6 0
QLYKSADHP 11 QLYKSADHR 11 0

The P149R polymorphism generates the miHAg HA-8 that was readily identified by a
prediction of HLA-A*0201 nonameric peptides. Note that both variants are predicted; the R
variant has a higher score than the P variant. The letters given in bold mark the relevant
polymorphic spot within the peptide.

The polymorphism I26M in the CD44 protein is not yet known as miHAg.
The prediction is done for HLA-A*0201 nonamers. There are only two
pairs of peptides with a score above the threshold of 18. The first pair is
NITCRFAGV and NMTCRFAGV, both of them scoring 20. The amino acid

Table 5
Prediction results for BFL-1

C Score
Above

threshold Y Score
Above

threshold Difference

CVLQIPQPG 4 YVLQIPQPG 4 0
QCVLQIPQP 1 QYVLQIPQP 11 10
LQCVLQIPQ 0 LQYVLQIPQ 0 0
YLQCVLQIP 1 YLQYVLQIP 1 0
DYLQCVLQI 23 + DYLQYVLQI 23 + 0
QDYLQCVLQ 2 QDYLQYVLQ 2 0
AQDYLQCVL 10 AQDYLQYVL 10 0
LAQDYLQCV 1 LAQDYLQYV 1 0
RLAQDYLQC 0 RLAQDYLQY 0 0

The C19Y polymorphism generates a miHAg pair (BCL2A1) whose variants receive identical
scores. According to the prediction, the miHAg character is not caused by peptide–HLA affinity.
The letters given in bold mark the relevant polymorphic spot within the peptide.
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exchange does not influence the predicted binding score, just like in the BFL-
1 example shown above. The scores of the second pair, SLAQIDLNI (score
23) and SLAQIDLNM (score 19), differ by 4, which suggests that there is
a higher possibility of SLAQIDLNI being presented on HLA-A*0201 than
SLAQIDLNM. Thus, one has to bear in mind that two factors may decide
about polymorphic peptides becoming miHAgs. On one hand, HLA affinity—
as reflected by the scores—influences presentation at the cell surface. On the
other hand, the repertoire of T-cell receptors, which is modeled by thymic or
peripheral selection processes, is responsible for the exclusive recognition of
only one peptide of a polymorphic pair, even if both peptides share the same
affinity.

5. Conclusion
We have listed a number of CTL epitopes from the pp65 protein of

HCMV and demonstrated the performance of epitope prediction and processing
prediction programs. While processing predictions worked rather efficiently,
the unusual length of several HCMV epitopes posed major problems in HCMV
epitope prediction. In addition, for some HLA restrictions, no predictions have
yet been offered. Nevertheless, if we see such in silico work as a rapid strategy
for first screening procedures, a number of the CTL epitopes investigated here
would have been identified without intensive experimental efforts. As epitope
prediction procedures are steadily expanded and refined, we expect that in the
near future most of HCMV epitopes will be identified with the help of such
prediction programs.
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18. Sette A, Grey HM: Chemistry of peptide interactions with MHC proteins. Curr
Opin Immunol 4:79–86, 1992.

19. Brusic V, Rudy G., Harrison L.C.: Complex Systems: Mechanisms of Adaption.
Amsterdam, IOS Press., 1994.

20. Adams HP, Koziol JA: Prediction of binding to MHC class I molecules. J Immunol
Methods 185:181–190, 1995.

21. Gulukota K, Sidney J, Sette A, DeLisi C: Two complementary methods for
predicting peptides binding major histocompatibility complex molecules. J Mol
Biol 267:1258–1267, 1997.

22. Holzhütter HG, Frommel C, Kloetzel PM: A theoretical approach towards the
identification of cleavage-determining amino acid motifs of the 20 S proteasome.
J Mol Biol 286:1251–1265, 1999.

23. Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanovic S, Dietz K,
Heinemeyer W, Groll M, Wolf DH, Huber R, Rammensee HG, Schild H: Cleavage
motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase
1. Proc Natl Acad Sci USA 95:12504–12509, 1998.

24. Kesmir C, Nussbaum AK, Schild H, Detours V, Brunak S: Prediction of
proteasome cleavage motifs by neural networks. Protein Eng 15:287–296, 2002.

25. Kuttler C, Nussbaum AK, Dick TP, Rammensee HG, Schild H, Hadeler KP: An
algorithm for the prediction of proteasomal cleavages. J Mol Biol 298:417–429,
2000.

26. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, Sissons JG:
The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is
dominated by structural protein pp65: frequency, specificity, and T-cell receptor
usage of pp65-specific CTL. J Virol 70:7569–7579, 1996.

27. Hebart H, Daginik S, Stevanovic S, Grigoleit U, Dobler A, Baur M, Rauser G,
Sinzger C, Jahn G, Loeffler J, Kanz L, Rammensee HG, Einsele H:
Sensitive detection of human cytomegalovirus peptide-specific cytotoxic
T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay
and flow cytometry in healthy individuals and in patients after allogeneic stem
cell transplantation. Blood 99:3830–3837, 2002.

28. Akiyama Y, Maruyama K, Mochizuki T, Sasaki K, Takaue Y, Yamaguchi K:
Identification of HLA-A24-restricted CTL epitope encoded by the matrix protein
pp65 of human cytomegalovirus. Immunol Lett 83:21–30, 2002.

29. Masuoka M, Yoshimuta T, Hamada M, Okamoto M, Fumimori T, Honda J,
Oizumi K, Itoh K: Identification of the HLA-A24 peptide epitope within
cytomegalovirus protein pp65 recognized by CMV-specific cytotoxic T lympho-
cytes. Viral Immunol 14:369–377, 2001.

30. Gavin MA, Gilbert MJ, Riddell SR, Greenberg PD, Bevan MJ: Alkali hydrolysis of
recombinant proteins allows for the rapid identification of class I MHC-restricted
CTL epitopes. J Immunol 151:3971-3980, 1993.



The SYFPEITHI Database 93

31. Singh H, Raghava GP: ProPred: prediction of HLA-DR binding sites. Bioinfor-
matics 17:1236–1237, 2001.

32. Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M,
Gallazzi F, Protti MP, Sinigaglia F, Hammer J: Generation of tissue-specific and
promiscuous HLA ligand databases using DNA microarrays and virtual HLA class
II matrices. Nat Biotechnol 17:555–561, 1999.

33. Singh H, Raghava GP: ProPred1: prediction of promiscuous MHC Class-I binding
sites. Bioinformatics 19:1009–1014, 2003.

34. Sathiamurthy M, Hickman HD, Cavett JW, Zahoor A, Prilliman K, Metcalf S,
Fernandez VM, Hildebrand WH: Population of the HLA ligand database. Tissue
Antigens 61:12–19, 2003.

35. Brickner AG, Warren EH, Caldwell JA, Akatsuka Y, Golovina TN, Zarling AL,
Shabanowitz J, Eisenlohr LC, Hunt DF, Engelhard VH, Riddell SR: The immuno-
genicity of a new human minor histocompatibility antigen results from differential
antigen processing. J Exp Med 193:195–206, 2001.

36. Akatsuka Y, Nishida T, Kondo E, Miyazaki M, Taji H, Iida H, Tsujimura K,
Yazaki M, Naoe T, Morishima Y, Kodera Y, Kuzushima K, Takahashi T: Identifi-
cation of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-
specific minor histocompatibility antigens. J Exp Med 197:1489–1500, 2003.



6

Searching and Mapping of T-Cell Epitopes, MHC
Binders, and TAP Binders

Manoj Bhasin, Sneh Lata, and Gajendra P. S. Raghava

Summary

This chapter describes searching and mapping tools of MHCBN database, which is a curated
database. It comprises over 23,000 peptide sequences, whose binding affinity with major histo-
compatibility complex (MHC) or transporter associated with antigen processing (TAP) molecules
has been assayed experimentally. Each entry of the database provides full information (such
as sequence, its MHC- or TAP-binding specificity, and source protein) about peptide whose
binding affinity (IC50) and T-cell activity is experimentally determined. MHCBN has number
of web-based tools for analyzing and retrieving information. In this chapter, we describe how
to use web tools integrated in MHCBN that include (i) mapping of experimentally determined
antigenic regions on the query sequence, (ii) creation of allele-specific peptide data set, and (iii)
BLAST search against MHC or antigen databases.

Key Words: database; MHC binders; TAP binders; T-cell epitopes

1. Introduction
To elicit immune response (T cells) for eradicating the self-altered or foreign

antigens involves a series of the complex steps that include (i) degradation of
antigens to peptides through proteolytic activity, (ii) transport of the peptides
to endoplasmic reticulum from cytoplasm through transporter associated with
antigen processing (TAP), (iii) binding of transported peptides to major histo-
compatibility complex (MHC), and (iv) recognition of MHC–peptide complexes
by T-cell receptors. The information about binding affinity of peptides with
MHC or TAP molecules and its ability to activate T-cell response can play a
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pivotal role in developing computational methods for subunit vaccine design.
One of the important problems in subunit vaccine design is to search antigenic
regions in an antigen (1) that can stimulate T cells called T-cell epitopes. In
literature, fortunately, a large amount of data about such peptides is available.
In past, a number of databases have been developed to provide comprehensive
information related to T-cell epitopes (2–5) that includes MHCBN developed
by our group. In this chapter, we describe how to use MHCBN efficiently.

2. Materials
The database contains the comprehensive information about each entry.

The information has been collected mainly from literature and other public
databases.

2.1. General Information

The database is accessible from the address http://www.imtech.res.in/
raghava/mhcbn (Fig. 1), and it provides detailed information about a peptide,
which includes (i) sequence, (ii) MHC- or TAP-binding specificity, (iii) binding
affinity with MHC/TAP molecules in terms of IC50 value, (iv) T-cell activity,
and (v) source protein. The MHC-binding affinity of peptides has been divided
into four semi-quantitative groups (high, moderate, low, and unknown) using
notation of MHCPEP (6). The information about experimental methods used
for exploring MHC–peptide-binding properties and T-cell activity has also been
included in each entry. The binding of peptides to MHC is mainly studied by
competitive binding assay, peptide elution, MHC reconstitution assay, stabi-
lization assay, mass spectroscopy, and so on. The T-cell activity of peptides
can be determined by assays such as cytotoxicity assay, proliferation assay,
cytokine release assay, and ELISPOT assay. The MHC-binding properties can
be indirectly determined by measuring T-cell activity, as all the T-cell epitopes
are MHC binders. MHCBN also provides information about anchor positions
(positions of peptides crucial for its interaction with TAP or MHC molecule).
The miscellaneous information about peptide is provided in comment field.
This field mostly contains the IC50 and reference IC50 values mentioned in
the research paper to discriminate high, moderate, low, and nonbinders. The
information about the published literature from where the data relevant to an
entry can be obtained is also maintained in the publication reference field of
the entry (7). The information includes title of the paper, authors and year of
publication, and name of the journal. The published literature has been linked to
PubMed database at NCBI for more detailed information. The overall structure
of each entry is shown in Fig. 1.
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Fig. 1. Structure of MHCBN.

2.2. Sequence and Structure of Antigenic Proteins

The database also contains sequence and structural information of proteins
containing regions identical to antigenic peptides. All peptides of the database
were searched in SWISS-PROT Version 40, and the proteins having matching
peptides have been extracted. These sequences have been stored in FASTA
format in database with hyperlinks to GenBank and SWISS-PROT (8,9). To
provide structural insight into antigenic peptides, all the antigenic peptides were
searched against the primary sequence of proteins whose three-dimensional
(3D) structure has been solved by either X-ray crystallography, NMR, or
molecular modeling. The summary of the 3D structure of proteins having
matching peptides is available in database with hyperlink to PDB through OCA
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Fig. 2. MHCBN database.

browser (10). This information can provide an insight into structural features
of antigenic and nonantigenic regions.

All these data have been maintained in the tables of relation database created
using the Postgres SQL. The structured query language is crucial in creating
a relation database; it permits query on any field of tables and extracts the
information about the linked fields.

3. Methods
The MHCBN has a set of web tools for making interactive and complex

queries to retrieve specific information. Following is a brief description of
menu options and tools available at MHCBN.

1. MHCBN Home: Clicking at this option leads to the home page of the MHCBN
database (Fig. 2).

2. SRS at EBI: This option, which is linked to the EBI site, allows web-based
searching and retrieval of nucleotide and protein sequence at EBI site.

3. SRS at IMTECH: The web-based searching is done at Institute Of Microbial
Technology’s (IMTECH) site through clicking this option.
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4. MHCBN Information: This link leads to a section of the server that contains
the descriptive account of the information about the architecture of MHCBN
database, recent developments at MHCBN, aims and objectives, data management
at MHCBN, system requirement to access, data submission and updates, acknowl-
edgements, disclaimer and limitation of liability, and copyright.

5. MHCBN Help: This option is linked to the web page that provides complete
information about the database and stepwise guidance to use it. A table of contents
is displayed at the top of the page, the contents of which are internally linked to
the relevant, detailed descriptions for the corresponding titles.

6. General query: The general query search options allow users to perform keyword
search on any field of the database by selecting appropriate options in the general
query search form (Fig. 3). The search can be performed on the basis of source
protein, published references, source organism, etc. The general search allows
search and customization of results on the following options:

• Search by keyword: Any keyword, for example, a five-digit entry number, MHC
allele, and name of protein, entered in this textbox, is searched in all fields of
entry to extract the entire information related to that keyword from the database.
The search can also be limited to specific field of entry to obtain more precise
information as given below. In order to use the database, a user is first required
to get registered (see Note 1).

Fig. 3. Form for general query search.
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• Any field: This option allows searching of a keyword in the selected field of
entry only.

• Select MHC allele: One or more MHC alleles can be selected from this option
box or else the default value “All alleles” is selected. Appropriate selection of
the other options in the form, in combination, can prove to be highly useful.
Otherwise, the default values of all the options would be considered.

• Select MHC class: Here, selection has to be made for the class of MHC to
which the above-selected MHC allele belongs or to which the query peptide
interacts, that is, MHC class I or MHC class II.

• Host organism: User may select the host organism harboring the MHC. For
example, human, mouse, rat, and chimpanzee, or the default value “All” would
be considered.

• Binding Affinity: The binding affinity of peptides to MHC is divided into four
groups by using the parameter similar to MHCPEP database (6). The peptides
having IC50 nm more than 50,000 were considered as nonbinders. In some
entries, peptides are divided into high, moderate, low, and nonbinders according
to the parameters mentioned by authors in papers. Depending on the need, users
can select a high-affinity, moderate–affinity, or low-affinity binder, nonbinders,
a peptide whose affinity is unknown, or peptides with any affinities.

• T-cell activity: This field contains a measure of immunogenic potency of a
peptide. This is determined in whole database by using the same parameters as
used in MHCPEP database (6). The T-cell activity is “YES?” where the peptide
is immunogenic but its PD50 is unknown. One can select if the peptide required
should show high, moderate, low, unknown, no T-cell activity, or every peptide
shall be considered.

• Select fields to display: This option allows making choice of fields to be
displayed in the result. Most of the fields in the result are linked locally or
hyperlinked to other databases to obtain more detailed information. The result
screen will display “No record found under specific condition” when no relevant
data are found in the database.

• Output: After making appropriate selections in the form, one needs to click the
submit button. This action returns the result page. On the top, a numerical figure
is given that indicates the total number of entries found in the database as per
to the selections made. The result is in a tabular form (Fig. 4) that contains the
peptide sequences along with the options selected to be displayed in the general
query search form.

7. Peptide search: This tool allows extracting of peptides from MHCBN, which are
identical or have pattern similar to that of query peptide. The peptides with few
mismatches can also be extracted by using this search tool. To narrow down the
search conditions for more specific search, various options can be selected in the
peptide search form (Fig. 5) as described below.
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Fig. 4. Result of general query search when default parameters were selected.

Fig. 5. Form for peptide query search.
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• Peptide sequence: Paste or enter query peptide sequence as single amino acid
code in the provided text box. All the nonstandard letters other than single amino
acids code will be ignored. The “X” character in the sequence will match with
any amino acid. The sequence of maximum 250 amino acids can be submitted.

• MHC Class: Refer Step 6.
• Host Organism: Refer Step 6.
• Binding Strength: Refer Step 6.
• T-cell Activity: Refer step 6.
• Select fields to display: Refer step 6.
• Output: The value of checked boxes will be displayed in result. The default

output only has Entry no., and MHC allele corresponding to query peptide
according to selected condition will be displayed. Every field displayed in result
is further linked for obtaining more information (Fig. 6).

8. TAP search: This tool allows users to extract peptides interacting with TAP. The
data about the peptides binding to TAP transporter will be useful in understanding
the process of endogenous antigen processing. This data can be useful for the
analysis of TAP-binding peptides and development of better method for prediction.
Following are the options that can be selected from the TAP search form (Fig. 7):

• Peptide Sequence: Refer Step 7.
• Host Organism: Refer Step 6.
• Select fields to display: Refer Step 6.

Fig. 6. Result for peptide query search for major histocompatibility (MHC) class I
in human.
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Fig. 7. transporter associated with antigen processing (TAP) search form.

• Output: The result displays, in a tabular format, quantitative measure of inter-
action between the query peptide and TAP molecule in terms of relative IC50

value along with the general information about the peptide (similar to the peptide
search output).

9. Creation of Peptide data sets: One of the major goals behind the development of
MHCBN is to provide a comprehensive source of data for the development of
new and more accurate computational methods useful in subunit vaccine design.
This interactive tool thus comes to aid for the creation of the allele-specific data
set depending on the options selected in the data set creation form (Fig. 8):

• Select MHC allele: Refer Step 6.
• Select peptide-binding affinity: Refer Step 6.
• Select peptide T-cell activity: Refer Step 6.
• Optional field: The unique data set can be created for specific MHC allele by

selecting this checkbox. Thus, no two peptides in the result would be identical.
• Output: The action of clicking the submit button returns a table that contains

the sequence of peptides for the options selected in the form. For example, on
selecting the allele H-2d, high-binding affinity, and moderate T-cell activity,
the output as shown in Fig. 9 was obtained.

10. Peptide mapping: This tool allows mapping of MHC binders, TAP binders and
T-cell epitopes (available in MHCBN) on query protein sequence. Therefore,
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Fig. 8. Form for data set creation.

user can locate experimentally proven antigenic and nonantigenic regions in the
query sequence. It is useful for the detection of immunodominant or promiscuous
binding regions in query sequence. The results of the peptide mapping for specific
antigenic sequence are shown in Fig. 5. All the mapped peptides are further linked
to provide more detailed information such as MHC-binding specificity, binding

Fig. 9. Result for data set creation for H-2d with high-affinity and moderate T-cell
activity.
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affinity, T-cell activity, publication, and database reference. The user can map
MHC binder, nonbinder, or T-cell epitopes of specific organism on the query
sequence by selecting appropriate value of host organism and type of peptides for
mapping. Users have to fill up the peptide search form (Fig. 10) and click submit
button to obtain the results. The options to be selected in the peptide search form are:

• Paste your query antigen: Paste or enter your antigenic or protein sequence as
single amino acid code in provided text area. All the nonstandard codes will be
ignored from query sequence.

• Select MHC host organism: User can restrict search by selecting the host
organism from this list.

• Select type of peptides to map: User can restrict search by selecting the value
of the type of peptide mapping.

• Output: The graphical (frames) output is displayed in rows. The first row (black
& bold) is amino acid sequence (single amino acid code) as submitted by the
user. The remaining rows show the location of MHC binders or nonbinders
or T-cell epitopes in the submitted sequence, which are found in MHCBN.
Different rows or frames are taken in account for showing overlapping regions.
A maximum of 20 frames are displayed for showing overlapping sequence
(Fig. 11).

11. BLAST search against MHC/antigenic sequences: This tool allows BLAST search
of query protein sequence against database of MHC alleles or antigenic peptide
sequences. The BLAST search is useful in determining whether the query sequence
belongs to MHC molecules or not. It allows to perform the following steps:

Fig. 10. Form for peptide mapping.
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Fig. 11. Sequence “ilkepvhgvaaaaatruitutruittaaaaailkepvyioyiyyiyoyiy,” in human
host and other default parameters.

(i) BLAST search of query sequence against MHC, (ii) extract full protein sequence
of BLAST hits, (iii) multiple sequence alignment of sequences obtained from
BLAST hits using CLUSTAL-W, and (iv) color view of multiple alignment by
program Mview. Following fields need to be filled in BLAST search form (Fig. 12)
in order to perform a BLAST search:

• Paste your Sequence: The protein sequence can be pasted into the text area, or
a file containing amino acids sequence can be uploaded using this option.

• Your choice of BLAST: For example, BLASTN for nucleotide–nucleotide
comparisons and BLASTP for protein–protein comparisons.

• Limit the expect value: the lower the E value, the more significant the score.
• Select region: Users can select a particular region from the input sequence data

for similarity search. This option saves the user’s job of continuously trimming
and editing their sequence in case where they want to restrict their search to a
particular region.

• Format type: Correct format type, that is, plain or standard (EMBL, FASTA,
GENBANK, etc.) shall be selected.

• Weight matrix: BLAST uses different kinds of substitution matrices for
similarity searches. It is well known that certain amino acids can easily substitute
one another in related proteins, presumably because of their similar physico-
chemical properties. These can be considered in calculating alignment scores in
a flexible manner through the use of a substitution matrix, in which the score
for any pair of amino acids can be easily looked up. Two most used matrices
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Fig. 12. Form for MHC BLAST.

are Point accepted Mutation (PAM) and BLOCKS substitution (BLOSUM)
matrices.

12. MHCBN statistics: This link would connect to the page having the statistical
account of the total number of peptides, out of which how many are MHC binders,
MHC nonbinders, Tap binders, Tap nonbinders, number of antigens, and the
references.

13. MHC structure: The sequence and structure of different MHC alleles can be
obtained from the database by clicking this link. Amino acid sequences of MHC
alleles are stored in FASTA format with relevant hyperlinks to IMG/HLA-DB
and GenBank databases (8,9). The sequence information is useful in evolutionary
and variability analysis of MHC molecules. The database also maintains brief
information about 3D structures of MHC molecules and MHC–peptide complexes.
These structures are hyperlinked to PDB via OCA browser (10) to provide specific
or detailed structural information. The structural information is useful in analysis
of MHC-binding pocket and development of ab initio structure-based method for
prediction.

14. MHC-linked disease search: The database also provides information about diseases
associated with various MHC alleles (autoimmune disease). Users can search
information by using either of the following options (Fig. 13). For example, MHC
alleles responsible for rheumatoid arthritis can be easily obtained by specifying
the name of disease or vice versa. This field is linked to OMIM database for more
detailed information about a particular disease.
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Fig. 13. Form for MHC linked disease.

• Disease name: One can simply enter the name of the disease and click submit
button to find out the alleles associated with that disease.

• Name of the allele: Users can also enter the name of the allele and find the
diseases associated with that particular MHC allele.

15. Related Links: A click on this menu option leads to a page that has the names and
web addresses of the various relevant immunological databases, servers, and web
sites. These are also hyperlinked to the corresponding web addresses.

16. Online data submission: The MHCBN is compiled mainly from published liter-
ature reports and public databases and is regularly verified and updated. The
database has a facility for online submission of MHCbinding, nonbinding peptides,
and T-cell epitopes. The experimental biologist can submit the data of new
MHC binders and T-cell epitopes. This will help us in maintaining the compre-
hensive database up-to-date. In order to maintain the quality, database team will

Fig. 14. Form for online submission of data.
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crosscheck the submitted entries before inclusion in database. The submission
has the following textboxes and options to be filled and selected, respectively
(Fig. 14):

• Name of the MHC allele/alleles: Biologists must enter the MHC allele or alleles
to which the newly found peptide is showing its binding Fig. 2. The entry in
this field is mandatory (see the figure below).

• Peptide sequence: One has to enter the sequence of a newly found peptide or
protein sequence in single letter amino acid code. This field is also mandatory
to fill in, and the combination of MHC allele and the sequence of the proteins
is unique (see the figure below).

• Source protein: Users can specify the name of the protein from which the
particular peptide was obtained.
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• Method for obtaining the peptide: The experimental methods used for exploring
peptide–MHC binding (e.g., competitive binding assay, peptide elution, MHC
reconstitution assay, stabilization assay, and mass spectroscopy) and T-cell
activity properties (e.g., cytotoxicity assay, proliferation assay, cytokine release
assay, and ELISPOT assay) may be entered in this field.

• MHC allele host organism: Name of the host, which is harboring the specific
MHC allele, may be selected from this list (e.g., human, mouse, monkey, and
chimpanzee).

• Anchor amino acids position: The position of the anchor amino acids relative
to N terminal can be entered in this text box. The value of field is “Not
Determined” where anchor positions in peptide sequence are not analyzed.

• Comments: This text box is meant for the entry of special information or
comment about the new entry. One can enter the IC50 and reference IC50

values to discriminate high, moderate, low, and non-MHC binders from
each other.

• Select MHC class: Users can select the appropriate class of MHC from this list.
• Peptide-binding affinity: Users can select appropriate binding affinity based on

parameters given in Step 6.
• T-cell activity: The immunogenic potency may be selected here depending upon

the criteria defined in Step 6 (see the figure below).

• Publication reference: This field contains the literature references of particular
entry in coded form. The code has the surname of the first or corresponding author,
the last two digits of the date of publication, and an identifying character in the
end (if required). Each reference includes title of paper, authors, year of publi-
cation, and name of journal. The references are further linked to records of PubMed
database at NCBI, which provides more comprehensive information (see the
figure below).
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• Submit: After all the information has been entered, users must click the submit
button. On submission, a page in return will be displayed.

17. Supplementary Info: This page is linked to the supplementary information about
the database.

18. MHCBN Team: This page has the name and addresses of the people involved in
the development of the database.

19. Contact: This page contains the name and address of the concerned person who
needs to be contacted in case of any query.
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Notes
1. To avoid the misuse of the site, the services are available for the registered
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themselves at http://www.imtech.res.in/errors/noauth.html. They need to fill up a
registration form if they agree to the terms and conditions stated in the form. The
user name and password is then sent by e-mail to the users.
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Searching and Mapping of B-Cell Epitopes in Bcipep
Database

Sudipto Saha and Gajendra P. S. Raghava

Summary

One of the major challenges in the field of subunit vaccine design is to identify the
antigenic regions in an antigen, which can activate B cell. These antigenic regions are called
B-cell epitopes. In this chapter, we describe how to use Bcipep, which is a database of
experimentally determined linear B-cell epitopes of varying immunogenicity collected from
literature and other publicly available databases. The current version of Bcipep database
contains 3,031 entries that include 763 immunodominant, 1,797 immunogenic, and 471 null-
immunogenic epitopes. The database provides a set of tools for analysis and extraction of data
that includes keyword search, peptide mapping, and BLAST search. The database is available at
http://www.imtech.res.in/raghava/bcipep/.

Key Words: B-cell epitope; immunodominant; immunogenic; neutralizing antibody; subunit
vaccine design; pathogen

1. Introduction
Antibodies are the key component in the adaptive immune response of

all higher vertebrates, and they recognize and bind to antigenic determinants
or B-cell epitopes of an antigen. These epitopes in proteins are composed
of hydrophilic amino acids, present on the protein surface, and composed
of 5–30 residues. Those epitopes that produce a more pronounced immune
response than others do under the same condition are termed immunodom-
inant epitopes. B-cell epitopes can be classified into two categories: (i)
conformational/discontinuous epitope, where residues are distantly separated
in the sequence and brought into physical proximity by protein folding
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and (ii) linear/continuous epitopes, which comprises a single continuous
stretch of amino acids within a protein sequence that can react with
anti-protein antibodies. Most of the B-cell epitopes were thought to be
discontinuous. However, linear epitopes are easily identified through enzyme-
linked immunoadsorbent assay (ELISA)-based epitope-mapping techniques
(PEPSCAN), and experimental B-cell epitopes largely include linear epitopes.
In the 1980s, it was shown that the conformational restriction is not a necessary
condition for the production of protein-reactive anti-peptide antibodies. There-
after, large numbers of linear B-cell epitopes have been reported in the liter-
ature. These epitopes can be exploited in the development of synthetic vaccines
and disease diagnosis. Currently, a number of vaccines based on linear B-cell
epitopes are under clinical phase trials against viruses, bacteria, and cancer.
These epitopes are also important for allergy research and in determining
cross-reactivity of immunoglobulin E (IgE)-type epitopes of allergens. This
information of experimentally determined linear B-cell epitopes were scattered
in the public domain and were collected and compiled in Bcipep database (1,2).
There are other databases that provide limited information on B-cell epitopes
such as JenPep (3), which has been superseded by AntiJen 2.0. In this chapter,
we describe how to use Bcipep database efficiently.

2. Materials
2.1. Source of Information

Information about B-cell epitopes was collected from the liter-
ature (PubMed, http://www.ncbi.nlm.nih.gov/pubmed/; ScienceDirect, http://
www.sciencedirect.com/). The information of the epitopes was curated
manually and compiled. A large number of human immunodeficiency virus
(HIV) B-cell epitopes were extracted from a book HIV Molecular Immunology
2001 (4). Statistics on pathogen group and on immunogenicity vice distribution
of B-cell epitopes in the database has been shown in Table 1.

2.2. Description of Database

The Bcipep database provides (i) comprehensive information about B-cell
epitopes, which includes source of protein, immunogenic potency of epitopes,
model organism, monoclonal or polyclonal antibodies produced against an
epitope, and neutralization potential of anti-peptide antibody; (ii) tools for
extraction and analysis of this information such as keyword search and peptide
mapping; and (iii) hyperlinks to MHCBN (5), PUBMED (6), Swiss-Prot (7),
and PDB (8) databases. The database also provides sequence retrieval system
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Table 1
Statistics on pathogen group and immunogenicity vice distribution of B-cell
epitopes in Bcipep database

Pathogen Immunodominant Immunogenic Nonimmunogenic

Virus (2,046) 415 1474 157
Bacteria (539) 130 159 250
Protozoa (236) 139 57 40
Fungi (53) 17 23 15
Others (157) 62 84 9

(SRS) version to retrieve information (http://www.imtech.res.in/srs5bin/cgi-
bin/wgetz?-fun+pagelibinfo+-info+BCIPEP).

2.3. Description of Web Interface

The Bcipep data have been maintained in “Relational Database Management
System” (RDBMS) called PostgreSQL, which is a public domain software
freely available. Full information about a peptide has been stored in a single
table. Related information such as publication reference and source proteins
reference has been stored in directories having internal links to main database.
The web server was developed in a UNIX environment on SUN server 420E in
Solaris 7.0. This server is designed to provide easy access to the users, based
on a set of simple graphical user interface (GUI) forms. Methods for searching
the databases and displaying the selected objects were built with HyperText
Markup Language (HTML) and CGI-scripts in PERL 5.4. Requirements for
accessing Bcipep are (i) Windows 95 and later version for personal computers
and (ii) Internet Explorer 4.01 and later version or Netscape 3.01 and later
version.

3. Methods
3.1. Description of Home Page

The Bcipep database is available at http://www.imtech.res.in/raghava/bcipep/.
The menus are in the left side of the page and are interlinked. Following is a brief
description of menus

3.1.1. Bcipep Home

It links to the home page of Bcipep, a database of B-cell epitopes. The
snapshot of the home page of Bcipep has been shown in Fig. 1.
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Fig. 1. The home page of Bcipep database.

3.1.2. SRS of Bcipep

It allows user to access SRS version of Bcipep from IMTECH
site (http://www.imtech.res.in/srs5bin/cgi-bin/wgetz?-fun+pagelibinfo +-info+
BCIPEP).

3.1.3. SRS @ EBI

Users can access SRS version of Bcipep from European Bioinformatics
Institute site, UK (http:// srs.ebi.ac.uk/srs6bin/cgi-bin/wgetz?-page+LibInfo+-
id+1X2XW1JU5_L+-lib+BCIPEP).

3.1.4. Mirror Site @ UAMS

This menu allows user to access Bcipep from its mirror site which is available
at University of Arkansas for Medical Sciences, Little Rock, USA (http://
bioinformatics.uams.edu/mirror/bcipep/).
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3.1.5. Bcipep Help

This page contains general information about the database entries, schematic
diagram of B-cell epitope, statistics on pathogen group and immunogenicity
vice distribution of B-cell epitope in the database, and application of Bcipep
data in prediction methods. There are other information related to specification
and requirements for accessing the Bcipep.

3.1.6. Keyword Search

This menu allows users to perform keyword search. More information is
available in Section 3.4.1.

3.1.7. Peptide Search

It allows users to search their peptide in Bcipep database (see Section 3.4.2).

3.1.8. Peptide Mapping

Users can map online B-cell epitopes in Bcipep database on their antigen
sequence (see Section 3.4.4).

3.1.9. Ab Structure

Bcipep maintains structure of antibodies whose coordinates are available in
Protein Data Bank; user can access these structures by clicking on Ab Structure.

3.1.10. Antigenic BLAST

This option allows users to search their antigen sequence against the antigen
sequence in Bcipep using BLAST (see Section 3.4.5).

3.1.11. Data Submission

Users can submit new experimental B-cell epitope data using this link.

3.1.12. Related Links

It links to other related databases.

3.1.13. Download

This menu allows users to download B-cell epitope data (see Note 1).

3.1.14. Developers

It shows the addresses of Bcipep database developers.
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3.2. Usage of Bcipep Database

The users are required to fill a request form available at
http://www.imtech.res.in/errors/noauth.html for using web servers developed
by raghava’s group (http://www.imtech.res.in/raghava/). The user name (e-mail
id) and password are provided through e-mail. The old users can directly access
the database by providing the user name and password.

3.3. Description of Fields

Bcipep have more than 3,000 entries; each entry consists of 13 fields. Each
field provides specific information related to B-cell epitopes. Following is a
brief description of each field.

3.3.1. Entry Number

This is a five-digit unique identifier provided to each entry of the database.
The entries can be searched from the database by using this unique identifier.

3.3.2. Peptide Sequence

This field has the primary amino acid sequence of the epitope. It has a link
to MHCBN database (5) in order to identify the peptides that are B-cell as well
as T-cell epitopes.

3.3.3. Source Protein

The information about the source protein from which the epitope is obtained
is available in this field. The field also provides the specific information about
the position of the peptide in the antigenic sequence.

3.3.4. Pathogen Group

The group of the organism to which the source protein or antigen belongs is
provided. The major pathogenic groups are virus, bacteria, fungi, and protozoa.

3.3.5. Immunogenicity

This is a semiquantitative measure of immunogenic activity of the peptide. In
Bcipep, it is divided into three categories: (i) immunodominant, if it increases
twofold to threefold anti-peptide antibodies in comparison with reference or
control (carrier protein, e.g., BSA or KLH); (ii) immunogenic, if it enhances
anti-peptide antibodies by onefold in comparison to reference; and (iii) null-
immunogenic, where no difference was observed when compared to reference.
This information is very important for developing B-cell epitope prediction
method.
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3.3.6. Model Organism

The database also provides information about the experimental animal model
used for immunization. Inbred mice, pigs, dogs, and monkeys were used as
animal model.

3.3.7. Experimental Method

This field of each entry specifies the experimental methods, which were used
for checking the immunogenic or antigenic properties of the peptide, such as
ELISA.

3.3.8. Antibody

This field provides full information about monoclonal or polyclonal
antibodies against an epitope. The information includes isotypes of Ig and
name/number of monoclonal antibodies.

3.3.9. Neutralization

The database contains information about neutralization potential of anti-
peptide antibody, which were crucial for considering a peptide for synthetic
vaccine design. In cases where no data was available, it is marked as ND (not
done by the author).

3.3.10. Antigen Structure

This field consists of PDB codes of protein structures having matching
peptides. These PDB codes are linked to OCA browser (http://pdb.tau.ac.il/) in
order to provide detailed structural information of these proteins. The database
has structure of 1,216 antigenic proteins.

3.3.11. Database Reference

The Bcipep provides hyperlinks to various sequence databases in order to
provide detailed information about peptides in other databases. The database
reference field consists of name/code of protein available in Swiss-Prot.

3.3.12. Publication Reference

The field provides full information about related publications with link to
PubMed (6).
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3.3.13. Comments

More important information about the peptide used in the study is available
in the Comment field (see Note 2).

3.4. Web Tools Integrated in Bcipep

3.4.1. Keyword Search

This option allows users to perform search on all major fields of the database
(Peptide Sequence, Source Protein, Publication Reference, and Database
Reference). One can restrict the keyword search on any specific field. It also
allows users to select the fields to be displayed. An example of keyword search
is shown in Fig. 2A, where key word ‘P26694’ is searched in any field of the
database. The output/result of this keyword search is shown in Fig. 2B.

3.4.2. Peptide Search

The database provides option to search a peptide in Bcipep. The server
permits users to search their query sequence in any pathogen group. Search can
be restricted on the basis of immunogenicity (e.g., immunodominant, immuno-
genic, or null-immunogenic) and pathogen group (all, virus, bacteria, fungi,
and protozoa). An example of input and output of peptide search is shown in
Fig. 3A, B, respectively.

(A) (B)

Fig. 2. The typical display of Bcipep database for keyword search, (A) input page
of keyword search and (B) output of keyword search.
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(A) (B)

Fig. 3. An example that illustrates search on Bcipep, (A)peptide search page and
(B) result of peptide search.

3.4.3. Mapping of T-cell Epitopes

It allows searching of peptide in Bcipep against MHCBN (5) database. By
clicking on “mapping of T-cell epitopes” on Peptide Sequence field, it links
to MHCBN database, which provides information about components of cell-
mediated immunity such as MHC binders/nonbinders, T-cell epitopes, and TAP
binders. The example of mapping of MHCBN peptides on B-cell epitope [by
clicking on Peptides Sequence field (see Fig. 3B)] is shown in Fig. 4A. The full
information of each map peptide can be obtained by clicking on the mapped
sequence. One such example is shown in Fig. 4A, B. Thus, the server is useful
in identifying the potential B-cell epitopes having T-cell epitopes (or MHC
binders).

3.4.4. Peptide Mapping

The peptides of Bcipep can be mapped on query sequence using this option.
The full information about mapped peptide can be obtained by clicking on it.
The tool will assist the users in gaining knowledge about the known immuno-
genic or nonimmunogenic regions in target protein of interest. The users can
specify the pathogen group and/or immunogenicity level of peptides to be
mapped on query sequence. An example of input and output of peptide mapping
is shown in Fig. 5A, B, respectively. The users can specify the pathogen group
and/or immunogenicity level of peptides to be mapped on query sequence.
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(A) (B)

Fig. 4. Mapping of peptide in MHCBN database, (A) mapping of MHCBN peptides
on B-cell epitopes and (B) full information about a MHCBN peptide.

(A) (B)

Fig. 5. Mapping of B-cell epitopes on antigen sequence, (A) submission page of
B-cell epitope mapping and (B) mapping results.

3.4.5. Antigenic BLAST

This tool allows users to search their query protein against antigenic
proteins maintained at Bcipep. The sequence of 1,070 antigenic proteins
has been obtained from Swiss-Prot. The similarity search is performed
using the GWBLAST server (http://www.imtech.res.in/raghava/gwblast/). The
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GWBLAST also allows users to analyze the BLAST output such as multiple
alignments and phylogenetic analysis.

3.5. Link to Other Databases

The Bcipep provides hyperlinks to various sequence databases in order
to provide detailed information about the peptides in other databases. The
database reference field consists of name/code of protein available in Swiss-
Prot. The Antigenic structure field consists of PDB codes of protein struc-
tures having matching peptides. These PDB codes are linked to OCA browser
http://pdb.tau.ac.il/ in order to provide detailed structural information of these
proteins. The Publication reference field provides full information about related
publications with link to PubMed. Bcipep is also linked to MHCBN database
in order to identify the peptides that are B-cell as well as T-cell epitopes.

3.6. Potential Applications

The identification of regions/stretches on an antigen from the data pool of
known epitopes is an important step in vaccine design. The Bcipep database
would be very useful as it consists of comprehensive information about exper-
imentally verified linear B-cell epitopes and tools for mapping these epitopes
on an antigen sequence. In case a query antigen contains known epitopes, this
database might aid in the wet experimentation and lower the cost by reducing
the overlapping repeats. This database also provides a link with MHCBN to
search for overlapping regions of MHC binders and T-cell epitopes in the
B-cell epitope. The epitopes in Bcipep can be used to derive rules for predicting
B-cell epitopes.
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Notes
1. The users can download all the entries and also of specific pathogen group, after
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particular residues, diagnosis study, and the development of vaccine candidate.
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Searching Haptens, Carrier Proteins,
and Anti-Hapten Antibodies

Shilpy Srivastava, Mahender Kumar Singh, Gajendra P. S. Raghava,
and Grish C. Varshney

Summary

Haptens are small molecules that are usually nonimmunogenic unless coupled to some carrier
proteins. The generation of anti-hapten antibodies is important for the development of immunodi-
agnostics and therapeutics. Recently, our group has developed a database called HaptenDB, which
provides comprehensive information about 1,087 haptens. In this chapter, we describe following
web tools integrated in HaptenDB: (i) keyword search facility allows search on major fields,
(ii) browsing service, to display all haptens, carrier proteins and antibodies, and (iii) structure
similarity search, which allows the users to search their structure against hapten structures.

Key Words: Carrier protein; database; hapten; haptenDB; pesticides

1. Introduction
Haptens are small molecules, such as pesticides, drugs, hormones, and toxins,

which are usually nonimmunogenic unless coupled with some macromolecules
such as proteins. These carrier molecules provide T lymphocyte help required
for the induction of humoral (antibody) response. Direct coupling of hapten
with carrier protein is possible where the target compound contains functional
groups such as –NH2 and –COOH. Alternatively, these functional groups can
be introduced by derivatization of the hapten. Thus, the production of anti-
hapten antibodies of desired specificity depends on hapten design (preserving
the chemical structure and spatial conformation of target compound), selection
of appropriate carrier protein, and the conjugation method (1). Antibodies once
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generated can be exploited for multiple applications such as in serology, drug
delivery, and development of immunodiagnostic kits.

Most of the contaminants in the environment including soil, water, air, and
food are small molecules that are often nonimmunogenic (haptens). Moreover,
the haptens can be altered structurally to raise the antibodies of defined speci-
ficity and affinities toward target analyte. Immunochemical techniques such
as immunoassays, immunosensors, immunochromatography, and immunola-
beling supplement traditional analytical methods in an ideal way because
these are extremely sensitive, simple, and inexpensive. Standardized immuno-
chemical methods for medicine, food, and environmental monitoring calls for
the generation of antibodies of defined specificities and affinities against the
analyte/hapten.

Immunology has followed the trend of molecular biology in the explosive
generation of new data. The amount of data pertaining to haptens is overwhelm-
ingly increasing because of its growing applied importance. Advances in
database technology have enabled us to manage these data efficiently, while at
the same time, bioinformatics have provided new tools for data analysis. Though
there are number of immunological databases on protein sequences and peptides
(epitopes) (KABAT, IMGT, FIMM, MHCBN, BCIPEP, and AntiJen 2.0) (2–7),
but there is only one database on haptens called HaptenDB (8). HaptenDB
is a comprehensive database comprising haptens, carrier molecules, and the
antibodies where the information has been collected from the web sources and
the standard literature (8). HaptenDB, the first of its kind, aims at providing the
information about chemical, physical, and structural properties of haptens to the
user . Besides, it also contains information about the carrier molecules used to
raise the antibodies against the particular hapten, together with the conjugation
methods, immunization schedules, host organism, and the properties of the
antibodies generated. The database further describes the assay method, which
could be used to characterize the antibody, as well as the application of the
antibody generated, e.g., in immunodiagnostics. The database is comprehensive
in itself as it has integrated many aspects of the hapten that one would like
to gather for research or application purpose. Furthermore, the database has
some structure similarity tools that would enable the user to check against
the query, whether the database has entries to similar/or related structures and
respective antibodies. To collect the particular information, if not entered in
the database, the reference and web link of each source is given. Although
the database is made user-friendly by making each page self-explanatory, still
one can go to Help, Information, and Related links options on Home Page
(see NOTE 3, 4 & 5).
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2. Materials
2.1. Web Server

The HaptenDB web server was developed in a UNIX environment on SUN
server420RinSolaris7.0.Thisserver isdesignedtoprovideeasyaccess to theuser,
based on a set of simple graphical user interface (GUI) forms. Methods for
searching the databases and displaying the selected objects were built with a
combination of Java Scripts and CGI-scripts in PERL 5.4. One can access database
and web tools via Internet from http://www.imtech.res.in/raghava/haptendb/ or
http://www.imtech.ac.in/raghava/haptendb/ (see NOTE 1). In order to provide
search on any field of database and to maintain standards, SRS version
of HaptenDB (http://www.imtech.res.in/srs/) and its mirror sites have been
launched on SGI origin server under IRIX environment, which is available from
http://bioinformatics.uams.edu/.

2.2. Description of Data

The current version of the database has 2,021 entries for 1,087 haptens and
25 carrier proteins. Each entry provides comprehensive details about (i) nature
of the hapten, (ii) information about carrier protein, (iii) coupling method, (iv)
methods of anti-hapten antibody production, (v) assay method (used for charac-
terization), and (vi) specificities of antibodies. Moreover, the haptens and the
antibodies are categorized on the basis of their nature, for example, pesticides,
herbicides, insecticides, drugs, toxins, steroids, and hormones. Tables 1 and 2
present the number of haptens and antibodies entered so far under different
categories.

Table 1
Distribution of haptens (1,087)

Category Number of entries

Pesticides, insecticides, fungicides, herbicides, etc. 225
Toxins 26
Drugs, antibiotics, analgesics, narcotics, etc. 120
Hormones, auxins, phytoestrogens, etc. 19
Synthetic and natural peptides 17
Vitamins and their analogs 18
Others (dyes, explosives, etc.) 99
Unclassified haptens or haptens belonging to smaller groups 563
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Table 2
Distribution of anti-hapten antibodies entries (2,021)

Category Number of entries

Pesticides, insecticides, fungicides, herbicides, etc. 650
Toxins 40
Drugs, antibiotics, analgesics, narcotics, etc. 200
Hormones, auxins, phytoestrogens, etc. 30
Synthetic and natural peptides 41
Vitamins and their analogs 50
Others (dyes, explosives, etc.) 210
Unclassified haptens or haptens belonging to smaller groups 800

3. Method
3.1. Browsing Tools

HaptenDB has number of browsing tools. To help the users, home page
displays three options of Hapten, Carrier, and Antibodies browsers for direct
search.

3.1.1. Browsing Haptens

This option allows users to browse haptens in database. The users can click
the hapten link provided on the home page, which will provide brief information
about each hapten. Figure 1 shows the example output of this option that
includes haptens, their synonyms, and modifications.

3.1.1.1. Detailed description of hapten

One gets brief description about hapten by clicking on browsing option,
HaptenDB. As shown in Fig. 1, each hapten record has clickable button ‘Detail,’
where user can get detailed information about a hapten. An example of hapten
2,4-dichlorophenoxyacetic acid is shown in Fig. 2, while Table 3 shows the
name and description of field.

3.1.2. Browsing Carrier

Similarly, on clicking the carrier option on home page, one would receive
the output (Fig. 3) as a list of 25 different carriers with their name, nature, and
sequence distributed over two pages.
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Fig. 1. Browsing of hapten molecules, an example output.

3.1.2.1. Detailed description of carrier molecule

Each carrier record has clickable button ‘Detail,’ which provides detailed
description of a carrier molecule. An example record of avidin is shown in
Fig. 4. The carrier is usually a high molecular weight protein attached with the
hapten to provide it immunogenicity. The brief description fields are given in
Table 4.

3.1.3. Browsing Antibodies

The clicking of antibody browser on the home page will show output as a
list of 238 records of different antibodies with their name and type (Fig. 5)
distributed over ten pages, and clicking the detail of any record will show
output as a list of the entries for a particular antibody raised against same,
related, or different haptens, along with the type and cross-reactivity of the
antibody (inlay in Fig. 5). Finally, clicking the detail of particular antibody
against the particular hapten will show the output (Fig. 6) as a table describing
the properties of the antibody.
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Fig. 2. The details of particular hapten (2,4-dichlorophenoxyacetic acid in this case).

The table showing antibody details is a comprehensive table to make one
understand the major aspects covered in a particular paper completely. It starts
with the name of the hapten, its synonym, modifications, if any, followed by
the details of antibody generation, and its characterization. Following is the
description of fields (see Fig. 6).

1. Hapten Name: Common name of haptenic compound.
2. Synonyms: Its chemical name or other commonly used names.
3. Modification: Modification in an existing well-known compound by introducing

some groups or replacing one group with other.
4. Conjugation Method: The method used for the conjugation of hapten with the

carrier molecules.
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Table 3
Detail description of each field

Field name Description

Hapten name It displays the common name of haptenic compound.
Synonyms This shows the chemical name or other commonly

used names.
Modification This specifies the modifications, if any, in an existing

well-known compound by introducing some groups or
replacing one group by the other.

Molecular formulae Molecular formula of the hapten
Physical properties This describes the physical properties in terms of its

color, odor, boiling point, melting point, and density.
Nature This gives nature or category of the haptenic

compounds, e.g., pesticide, drug, peptide, hormone,
and vitamins.

Molecular weight Molecular weight of the compound.
Biological activity It describes the effect of the compound in terms of

toxicity on biological system.
Area of uses This field contains information about the different uses

of the hapten and their actions.
Structure This field displays 2D (Fig. 3) and 3D (Fig. 4)

structure of hapten. Jmol has been integrated into
the database for the display and manipulation of
3D structures. Moreover, the structures could be
downloaded in the form of Mol files.

5. Conjugation Method Details: They are well-defined protocols that are usually
used with some modifications and are cited in literature, for example, active ester
method and mixed anhydride method. Either the details or the reference of the
paper is provided.

6. Spacer/Linkage Nature: The spacer arm, if any, attached to hapten before conju-
gation to carrier molecules. As regard to linkage nature, the nature of bond between
the hapten and the carrier molecule, for example, amide linkage.

7. Hapten Carrier Ratio: It shows number of haptens attached per molecule of carrier.
8. Antibody Name: Name of the antibody that is raised against hapten.
9. Host organism: The host used to raise antibodies, that is, mouse, rabbit, goat, etc.

10. Type & Class: It is the type of antibody that is raised in the host organism,
for example, monoclonal, polyclonal, or only antiserum. In case of monoclonal
antibodies, the details of isotypes are also described.
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Fig. 3. Browsing of carrier molecules, an example output.

Fig. 4. The details of particular carrier molecule (avidin in this case).

11. Cross-reactivity: Cross-reactivity of the raised antibodies with other similar or
related compounds has been mentioned as IC50 value, where IC50 is referred to the
amount required for 50% inhibition of the antibody in the given set of conditions.

12. Sensitivity: This is also referred as limit of detection of the hapten with the raised
antibody.

13. Assay System: The method used for characterizing the antibodies, for example,
competitive ELISA, noncompetitive ELISA, and RIA.

14. Application: Likely application and future prospects of the ELISA method
developed, antibody raised, etc.
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Table 4
Description of fields of carrier record

Field name Description

Carrier name The name of the carrier
Nature The nature of the protein such as, glycoprotein, and lipopeptide.
Sequence The sequence of the protein. For this, the NCBI GENPEPT link

is provided from where one can retrieve the information about
the sequence, source, and origin of the carrier.

Physical properties In terms of the molecular weight and any specific property for
its advantage as carrier protein.

Fig. 5. Browsing of antibodies in HaptenDB, a screen shot from HaptenDB after
clicking on “Browsing Antibodies.”

15. Reference: This field has the details of the journal, author, title, volume, page
numbers., and year of publication of the paper in which this information is reported.

16. Web link: This field contains the web link of the research paper that is cited in
the reference field.

17. Comments: This field contains other relevant information that is not contained
in all the above-mentioned fields such as immunization protocol, some other
important properties of antibody, hapten, or carrier.
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Fig. 6. Table showing detailed information of an antibody, a screen shot.

Fig. 7. Keyword search page of HaptenDB.
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3.2. Searching Options

As browsing tools allow one to see the records as they were entered in the
database. It is difficult to search a specific hapten or antibody or carrier using
the browsing tool.HaptenDB also has searching facility, in order to assist the
user in getting a specified hapten. The searching facility includes (i) keyword
search and (ii) structure similarity search.

3.2.1. Keyword Search

Using this search engine, one can specify a search by giving keywords.
The keyword, that is, input (Fig. 7), could be the name of the (i) hapten,
(ii) antibody, (iii) author, (iv) title of the paper, (v) nature of the hapten, and
(vi) empirical formula of the hapten. The users can also specify the category
of the hapten: (i) all compounds; (ii) pesticides, herbicides, and insecticides;
(iii) drug and vitamins; (iv) steroids and hormones; and (v) toxins and the host
organism in which antibody is raised as (i) all hosts, (ii) mouse, (iii) sheep,
and (iv) rabbit. Moreover, results per page can also be specified as desired:
(i) 10, (ii) 25, (iii) 50, or (iv) 100 results per page. Figure 8 shows the keyword
search, that is, output for the atrazine and the options to filter the search.

Fig. 8. An example output page of keyword search.
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3.2.2. Structure Search

One of the powerful tools integrated in HaptenDB is structure similarity tool,
which allows user to search similar hapten structures. The similarity search
option can be divided into two categories: (i) upload and search structure and
(ii) sketch and search the structure.

Fig. 9. Searching of similar structures, an example input and output screens of
HaptenDB.
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Upload and Search Structure

This option allows one to search their structure against hapten structure.
In order to use this option, one needs to have structure in standard format
readable by BABEL software. One needs to upload the structure file to be
searched and to select appropriate options that include type of similarity search
(e.g., substructure, superstructure, perfect, or exact search). The output (Fig. 9)
will provide the list of haptens and the corresponding antibodies satisfying the
criteria of the search (substructure search in this case), and again clicking the
detail will lead to the detail of hapten or antibody.

Sketch Search

The database integrates JME molecular editor, using which one can sketch
the structure of the query molecule instead of the uploading of the file. This
option is very useful for creating and searching similar structure. Figure 10
shows the input for the chlorobenzene sketch search and submit for the

Fig. 10. A screen shot of sketching structure using JME editor.
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similarity search as above; however, output would be the same (Fig. 9) as in
case of structure search.
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Notes
1. The users are required to fill a request form available at

http://www.imtech.res.in/errors/noauth.html for using web servers developed by
Raghava’s group (http://www.imtech.res.in/raghava/).

2. It is difficult for developers to maintain any database without the help of the
scientific community. Users are requested to submit their new haptens.

3. Each page of the database is self-explanatory; still to help the user “Help” option
is provided on the home page as well as individual pages.

4. Database have Related Links, which gives the web links of the sites either used for
the construction of the database or could be useful for the browser in one or the
other way.

5. Information option gives the information about the architecture of the database,
category-wise analysis of database, data management of HaptenDB, system
requirement to access, data submission and updates, and disclaimer and limitation
of liability.
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The Classification of HLA Supertypes by GRID/CPCA
and Hierarchical Clustering Methods

Pingping Guan, Irini A. Doytchinova, and Darren R. Flower

Summary

Biological experiments often produce enormous amount of data, which are usually analyzed
by data clustering. Cluster analysis refers to statistical methods that are used to assign data with
similar properties into several smaller, more meaningful groups. Two commonly used clustering
techniques are introduced in the following section: principal component analysis (PCA) and
hierarchical clustering. PCA calculates the variance between variables and groups them into a few
uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical
clustering is carried out by separating data into many clusters and merging similar clusters
together. Here, we use an example of human leukocyte antigen (HLA) supertype classification
to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial
Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering,
respectively. However, the reader should bear in mind that the methods have been incorporated
into other software as well, such as SIMCA, statistiXL, and R.

Key Words: HLA; MHC; supertype; principal component analysis; hierarchical clustering;
GOLPE

1. Introduction
Human leukocyte antigen (HLA) is one of the most polymorphic proteins in

human. There are more than 2,000 HLA sequences in the IMGT/HLA database,
and the number is increasing yearly. Only a small percentage of HLA alleles
have known binding motifs. Sette et al. (1) was the first to group class I HLA
alleles with similar binding motifs into superfamilies. Several HLA supertypes
were described—A2 (1,2), A3 (3), and B44 (4). Later, the number of defined
supertypes was extended to 9 (5), which were A1 (A∗0101, A∗2501, A∗2601,
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A∗2601, and A∗3201), A2 (A∗0201–07, A∗6802, and A∗6901), A24 (A∗2301,
A∗2402–04, and A∗3001–03), A3 (A∗0301, A∗1101, A∗3101, A∗3301, and
A∗6801), B7 (B∗07, B∗35, B∗51, B∗53, B∗54, B∗55, B∗56, B∗67, and B∗78), B27
(B∗1401–02, B∗1503, B∗1509, B∗1510, B∗1518, B∗2701–08, B∗3801, B∗3802,
B∗3901–04, B∗4801, B∗4802, and B∗7301), B44 (B∗37, B∗4001, B∗4002,
B∗4006, B∗41, B∗44, B∗45, B∗47, B∗49, and B∗50), B58 (B∗1516, B∗1517,
B∗5701, B∗5702, and B∗58), and B62 (B∗1301–02, B∗1501, B∗1502, B∗1506,
B∗1512, B∗1513, B∗1514, B∗1519, B∗1521, B∗4601, and B∗52).

Sette’s classification was a motif-based approach and required binding motifs
for each allele. However, most of the 783 known class I HLA alleles have not
been studied experimentally. To characterize all HLA alleles using experimental
binding assays is both expensive and time-consuming; therefore, a chemometric
strategy is applied to classify class I HLA molecules into supertypes, using
information drawn solely from the protein sequences. The techniques used were
GRID (6) and principal component analysis (PCA) (7,8). The molecular inter-
action fields (MIFs) between the chemical probes and the HLA molecules were
calculated in GRID, and the MIFs were then used to build PCA/consensus PCA
(CPCA) models. Results of the GRID/CPCA analysis were compared with the
classification using hierarchical clustering analysis on CoMSIA fields; together,
the results were used to classify HLA molecules and generate “supertype finger-
prints,” that is, the sequence features for supertype classification (9).

In chemical or pharmacological analysis, often many drug targets are studied
in one experiment, and little information can be extracted from the data directly
(10). PCA simplifies the data by replacing the large number of variables in
the original data set with a few new, uncorrelated variables called principal
components (PCs) (8). The PCs are calculated in the order of importance, and
most of the variance in the data can be explained by the first few components.
A variation of the PCA, CPCA, is also commonly used for calculations with
multiple probes (11). CPCA divides values generated by each probe into blocks,
and it is easier to see which property is the most important in the model (12,13).

2. Method Theory
2.1. GRID

The GRID program (version 21) finds the energetically favored or disfavored
regions on molecules with known three-dimensional (3D) structures. Many
molecules can be included in one calculation (6). A selection of chemical
probes, which represent atoms or functional groups with different properties,
is included in the program. GRID calculates the interaction energy between
selected chemical probes and each of the molecules.
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A GRID box is defined to include the interested molecular areas in the
calculation (Fig. 1). GRID uses different probes placed at a regular interval
throughout the grid box to calculate the interaction energy between the molecule
and the probes. An example of the probes used in the HLA family calculation
is listed in Table 1.

2.2. PCA

The PCA is commonly used in multivariate data analysis to reduce the
number of variables. Data used in PCA are stored in a data matrix X (Fig. 2).
There are N observations and K variables in the matrix. Each observation
occupies one row; the variables are measurements of the observation and are
stored in the columns.

PCA decomposes the matrix X into two smaller matrices: the scores matrix
T and the loading matrix “P,” which explain the overall variance of the X
matrix. The scores matrix contains a few variables M (Fig. 2), that is, the PCs,
which can be used to describe the observations. The loading matrix reveals
the relationship between the variables in the original matrix and the PCs. Plots

Fig. 1. The GRID box.
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Table 1
Chemical probes used in the GRID/CPCA study

Probe Chemical group Represented amino acids

OH2 Water Hydrophilic amino acids
Dry The hydrophobic probe Hydrophobic amino acids
H Hydrogen Hydrogen bond donor/accepter
C3 Methyl CH3 group Aliphatic amino acids
C1= sp2 CH aromatic or vinyl Phe, Tyr, Trp, His
N:* sp N with a lone pair His
N:= sp2 N with a lone pair Asn Gln
N1 Neutral flat NH eg. Amide Any amino acids
N2+ sp3 amine NH2 cation Arg Lys
O1 Alkyl hydrox OH group Ser Thr
OH Phenol or carboxy OH Tyr Asp Glu
O sp2 carbonyl oxygen Asp Asn Glu Gln
S1 Neutral SH Cys Met

List of GRID probes used in the study. *A total 13 probes are selected from probes offered in
GRID. These probes are chosen to represent different characteristics of the twenty amino acids.

of the observations in the multidimensional space are called the scores plots,
which identify similarities and differences within the observations and groups
them accordingly, whereas the loading plot relates the original variables with
the PCs and identifies variables that are important in distinguishing groups of
observations.

N

M

N

K

ObservationsObservations

Variables PC

Fig. 2. The data in principal component analysis (PCA) are stored in a matrix, with
N observations and K variables. The analysis builds a new model containing all the
observations, and the variables in the original data set are replaced by a few new
uncorrelated variables M , called principal components (PCs). By reducing the number
of variables, the PCA model shows relationships between observations and variables
and among observations themselves.
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2.3. CPCA

Some multivariate data are organized in blocks; each block describes one
molecular force. For example, in GRID, the interaction energy values are
calculated using probes representing different chemical properties, and data
are separated into the corresponding blocks. However, the variance can be
very different among the data blocks. The energy values generated by probes
representing weak nonbonded interactions such as van der Waals force and
hydrophobic attractions will be masked by those generated by stronger interac-
tions such as hydrogen bonds. Because the weak forces are equally important
in molecular interaction, it is necessary that their effects are considered in the
CPCA model. To overcome this problem, a scaling process is applied to the
data to normalize their importance in the model. The scaling method used in
Generating Optimal Linear Partial Least Square Estimations (GOLPE) is named
block unscaled weights (BUW) scaling, in which data generated by each probe
are organized into one block, and weighting coefficients are calculated for each
block. The probes are scaled according to the weighting coefficients, which
gives each probe the same importance in the model, whereas the relative scales
of variables within the block do not change. Figure 3 illustrates the BUW
scaling. Figure 3 A shows the initial variable distribution in each probe, and
Fig. 3B shows the normalized variable distribution after the scaling.

2.4. GOLPE

GOLPE (6) improves the predictivity of the model by comparing the contri-
butions of each variable and excluding those that make very small or no
contributions. In this way, the model generated by GOLPE has a higher level
of predictivity than the one generated by PLS alone (6).

GOLPE also has one module for PCA calculation. The PCs are obtained
by maximizing the variance of linear functions of the matrix. The results of
the GRID field’s calculations are stored in files with .kont extension and are
imported into GOLPE. The data are pretreated before calculation; all the data
with absolute values smaller than 0.03 or with standard deviation less than 0.03
are deleted. Positive interaction energy represented unfavorable steric repulsion
between the probe and the molecule; therefore, it is removed by setting the
maximum cutoff to 0 kcal/mol.

After calculating GRID energy fields using each probe, the probes that
give the highest explained variance by the first three PCs are selected, and a
GRID calculation is run using all these probes. The results are used to build a
CPCA model.
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When more than one probe is used in the GRID calculation, the data
generated by different probes are grouped into blocks, and they are often
analyzed by hierarchical PCA methods such as CPCA. The advantage of such
methods over PCA is that they compare the relative importance of each block
in the calculation and make a “consensus” clustering of the objects. CPCA uses
the same principle as PCA: a CPCA model tries to explain the overall variance
of the original data matrix. The algorithm used in CPCA is an adaptation of
the NIPALS algorithm used in PCA (14). Like PCA, CPCA calculates the PCs
and gives the scores and loading matrix. In addition, CPCA also calculates the
importance of each data block. It calculates the scores and the loading matrix
for each probe used and gives the weight matrix that illustrates the contribution
of each probe in the overall scores.

2.5. CoMSIA

The CoMSIA calculations were performed on a Silicon Graphics workstation
using Sybyl 6.9, as previously described (15). The structure of the HLA
supertype A∗0101 is used as a template to align all the HLA structures.

The HLA structures are evaluated using the five CoMSIA physicochemical
properties included in the QSAR module of Sybyl 6.9: steric, electrostatic,
hydrophobic, and hydrogen donor and hydrogen bond acceptor properties. The
properties are evaluated using a probe atom placed at regular intervals within
the grid. The probe has a radius of 1 Å, charge, hydrophobicity, and hydrogen
bond donor and acceptor properties all equal to +1. Similarity indices are
calculated using Gaussian-type distance dependence between the probe and the
atoms of the peptides tested.

2.6. Hierarchical Clustering

Hierarchical clustering analysis is a statistical technique used in classifying
large numbers of objects to reveal how closely the objects are related (16).
A common form of hierarchical clustering is the agglomerative algorithm, in
which the calculation of hierarchical clusters starts by separating each object
into a separate cluster (17). The distance between two clusters is dependent
on the similarities between the two objects. The clustering is then improved
by merging clusters that have the shortest distance (17). The distance between
the new clusters is recalculated. The steps are repeated until all clusters are

�
Fig. 3. The distribution of the variables for each probe. a. before the block unscaled

weights (BUW) scaling, and b. after the block unscaled weights (BUW) scaling.
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clustered into a single cluster (18). The result of the clustering is a binary tree
with a root and many leaves; each leaf represents one object (19). The order of
the leaves is arbitrary. An HLA classification is carried out using hierarchical
clustering based on CoMSIA fields, in which the alleles were clustered by
comparing the generated CoMSIA fields of each molecule (9).

3. Methodology
3.1. GRID/CPCA Calculation

3.1.1. Protein Structures

GRID and CoMSIA calculation requires the 3D structures of the proteins.
As there are only a few crystallized HLA protein structures available, the
alternative approaches are to select a crystallized structure as a template and
build the rest of the molecules by homology modeling. The template structure
is selected from the RCSB protein data bank (http://www.rcsb.org/pdb/).

3.1.2. Computer Software

GRID calculation is carried out on the GRID software developed by
Molecular Discoveries Ltd. The version of the program used is 21.

3.2. Calculating MIFs Using GRID

3.2.1. Import Structures

1. Molecules are imported into the program using one of the two options on the
program tool bar “Add single” and “Add multiple,” which are for adding single structure
file and multiple structure files, respectively. Because multiple structures are often used
in GRID calculation, the option “Add multiple” is recommended. A file with the .lst
extension containing the names of all the structure files is required for this option. A
dialog is activated by clicking the “Add multiple” button. On the “List” panel, enter a
.lst file in the text box and select “automatic” filtering level from the pull-down list.
Click “OK,” and all the files included in the .lst file will start to be imported into the
GRID. Depending on the numbers of structures, this process can take up to 10 min.

2. After importing the molecules, a table will appear in the main window of the
GRID interface. Each row contains one structure. The status column shows whether the
structures have been imported correctly. Usually it displays “ready,” which means the
user can proceed. If there is an error, depending on the nature of the error, the row will
appear in yellow or in red, with the words “GRIN error” in the status column. Note that
to select “automatic filtering” in “Add multiple” or “PDB filtering” in “Add single” in
step 2 will help to reduce the number of errors, particularly the water molecules in the
PDB file, which may otherwise be recognized as errors.
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3.2.2. Calculate MIFs

1. An interaction box is defined before calculation. The box is defined manually. On
the Method list, click “define box size.” On the dialog box, deselect “automatic” and
click the “interactive” button. On the window displaying the structure, right click and
select “Toggle mode” to move the box around and modify the box size. Then select
“OK.”

2. At least one probe is required for calculation. To select the probes, click “Probes”
on the menu and select “Choose probes” from the drop-down list. After selecting the
probes, click “OK.”

3. Several parameters are required to be set for calculation. This can be viewed from
the keyword tree. Three parameters are set for calculating multiple structures and to
generate output: NPLA = 0�5� MOVE = 1, and LIST = −2.

4. To run the program, select “Run” from the tool bar and choose “Joint” from
“Advanced” panel and click “OK.” The status column in the main window should
change from “ready” to “running.” When the calculation finishes, a dialog will appear
to inform the user.

3.2.3. Build PCA/CPCA Models in GOLPE

The result file from GRID is saved in .kont extension. This file is imported
into GOLPE to build PCA models.

1. Files are imported into GOLPE using the option “Import fields” on the pull-down
list of “File,” where the user selects the .kont file they want to import and name the
new golpe data file to which the program imports the data. The new .dat file is then
opened by selecting “File” and “Open data file.”

2. Usually data is pretreated in GOLPE before further calculation. Select
“Pretreatment” from the menu and “Advanced pretreatment.” From the dialog, select
the following parameters:

a. “maximum cutoff” and set the values to be 0,
b. “zeroing values,” select both positive and negative values and set the value to be

0.03, and
c. “min SD cutoff,” and set the value to be 0.03, if multiple probes are used in

GRID calculation, choose “BUW scaling” from the dialog and select “OK.”

3. Choose “Modeling” from the menu and select “Generate PCA model,” set dimen-
sionality to be 5, click “OK.” The results of the PCA model are displayed in the main
window.

4. To view the maps generated by the PCA model, choose “Plot” from the menu.
For scores plot, select “2D-plot” or “3D-plot” from the drop-down list followed by
“PCA scores.” To view the loading map, select “Grid plot” from the drop-down list
and “PCA loadings.” Enter the component that the user wants to use and click “OK.”
The maps are displayed in a separate pop-up window.
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3.3. Hierarchical Clustering Based on CoMSIA Fields analysis

3.3.1. Evaluation of HLA Binding Site using CoMSIA Fields

3.3.1.1. Building a New Molecular Database

1. Select “File” from the menu and “database,” choose “New database,” and name
the database. Select the “update” mode to enter molecules into the database.

2. Add all structures into the database. Select “Read” from “File” to read the structure
file and center the molecule so that it is displayed in the center of the screen.

3. Select “Biopolymer” from the menu and “Add hydrogens.” Select the molecule
you just displayed and click “All” so that hydrogen atoms will be added to the whole
molecule. Click “OK,” which gives another dialog, choose “ALL” again and click
“OK.” All the hydrogen atoms should be added to the molecule now.

4. Select “Biopolymer” again from the menu and “Load charges.” Select the molecule
and choose “All” and click “OK.” In the next dialog, select “KOLL_ALL” from the
list followed by “OK.” All the charges will then be added to the molecule.

5. All structures are aligned manually. To do this, select “Biopolymer” from the
menu followed by “Align structures using homology.” Highlight the template molecule
to be the fixed molecule and select the new molecule to be movable. Click “OK.”

6. Select “Build/Edit” from the menu and “Name molecule,” give the newly aligned
molecule a name, and press “OK.” Now the new molecule is ready to be put into the
database.

7. From “File” select “Database” and “Put molecule,” select the newly named
molecule from the list and click “OK.” The molecule is now entered into the database.
Steps 2–7 are repeated until all the molecules are entered into the database.

3.3.1.2. Calculating CoMSIA Fields and Hierarchical Clustering

1. From “File” choose “Spreadsheet” and “New”. Select “Database” in the pop-up
window and select the name of the newly developed database and press “Open.” A
new spreadsheet should be opened in a pop-up window with the name of the molecules
listed in the first column.

2. From the spreadsheet window choose “QSAR” from the menu and select “manage
QSAR” from the drop-down list. Select “Regions” and “Define” in the following dialog
and choose “User specific” to define a grid manually. Enter values into the X, Y , and
Z dimensions till the molecule in question is enclosed in the grid.

3. Select the second column from the spreadsheet and press the “Autofill” button.
Select “CoMSIA” and choose “steric” from the list. The attenuation factor is set to
0.3. Name the column in the next dialog and press “OK.” The steric interactions are
automatically calculated and listed in the second column of the spreadsheet. Repeat
this step for electrostatic, hydrophobic, and hydrogen bond donor and hydrogen bond
acceptor interactions.
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4. Choose “QSAR” from the spreadsheet menu and select “Hierarchical clustering”
from the list. Use all default settings and press “Do.” A dendrogram should be displayed
in the window after calculation finishes.

Both GRID/CPCA and hierarchical clustering are useful chemometric
techniques used in object classification and require some manual interpretation
of the results. The classification by a CPCA model is reflected in the scores
and loading plots. The scores plot gives a 2D or 3D overview of the objects
in each cluster, but the size of the cluster and the outliers have to be defined
by the user. Similarly, the energy levels of the loading plots also have to be
adjusted manually to show the energetically favored and disfavored regions.
Sybyl lists the molecules represented by each leaf of the hierarchical clustering,
but the user needs to decide which level of the dendrogram to be used in the
classification. Overall, there are no set rules, and the interpretation of data is
largely dependent on individual user’s experience.
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Structural Basis for HLA-A2 Supertypes

Pandjassarame Kangueane and Meena Kishore Sakharkar

Summary

The human leukocyte antigen (HLA) alleles are extremely polymorphic among ethnic
population, and the peptide-binding specificity varies for different alleles in a combinatorial
manner. However, it has been suggested that majority of alleles can be covered within few HLA
supertypes, where different members of a supertype bind similar peptides, yet exhibiting distinct
repertoires. Nonetheless, the structural basis for HLA supertype-like function is not clearly
known. Here, we use structural data to explain the molecular basis for HLA-A2 supertypes.

Key Words: HLA; alleles; peptide; binding; supertypes; structural basis

1. Introduction
The human leukocyte antigen (HLA) alleles are highly polymorphic among

ethnic population. Today, more than 1,800 HLA alleles are known and about
a 1,000 of them refer to the class 1 loci (1). Class I alleles bind peptides of
length 8–10 residues during T-cell-mediated immune response (2). Therefore,
the possible combination of specific HLA–peptide binding is large. However,
it has been suggested that a majority of alleles can be grouped into few
“HLA supertypes,” where the members of a supertype bind similar peptides,
yet exhibiting distinct binding repertoires (3). The functional overlap between
different alleles within defined supertypes will significantly reduce peptide-
binding diversity. A catalog of functional overlap is critical for grouping alleles
into supertypes from sequence information. In recent years, a number of super-
types have been defined by comparing peptide-binding data. Thus, HLA-A1
(4), HLA-A2 (3,5), HLA-A3 (5), HLA-A24 (4), HLA-B7 (5), HLA-B27 (4),
HLA-B44 (6), HLA-B58 (4), and HLA-B62 (4) supertypes have been defined.
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Alternatively, Chelvanayagam et al. (7), Zhang et al. (8), Zhao et al. (9),
and Doytchinova et al. (10) grouped HLA alleles into functionally overlapping
clusters from sequence data. Chelvanayagam et al. (7) identified interaction
pockets from HLA–peptide crystal structures; Zhang et al. (8) defined A–F
structural binding pockets; Zhao et al. (9) defined functional pockets made
of critical polymorphic functional residue positions (CPFRP); Doytchinova
et al. (10) used molecular interaction fields (MIF), hierarchical clustering (HC),
and principal component analysis (PCA); and Lund et al. (11) used clustering
procedures for grouping HLA alleles into putative supertypes. However, the
structural basis for “supertype-like” HLA function is not clearly known.
Here, we use structural complexes of HLA–peptide structures to explain HLA
supertypes.

2. Methodology
2.1. HLA Supertype Data

HLA-A2 supertype data are obtained from literature (Table 1). These data
describe the binding/nonbinding of 25 peptides to A∗0201, A∗0202, A∗0203,
A∗0206, and A∗6802. Table 1 summarizes six peptides binding to all members
of the A2 supertypes (A∗0201, A∗0202, A∗0203, A∗0206, and A∗6802). The
functional overlap between different members of the supertype is interesting.
It also shows several peptides binding to some members but not all members
of the A2 supertypes (Table 1).

2.2. HLA Sequences

The protein sequences of HLA-A (295 alleles) were obtained from
IMGT/HLA (release 2.5) for this analysis (1).

2.3. Functional Pockets in HLA Structures

The CPFRPs were used to define functional pockets in HLA structures (9).
HLA-A allele sequences are polymorphic but homologous among themselves.
Hence, they have a similar 3D structure in space. However, the polymorphic
residues are discontinuously distributed in structure. The residues at CPFRP
demonstrated a change in solvent accessibility (�ASA) of >0 Å2 upon complex
formation in a set of HLA–peptide structures (9) and at least one amino acid
polymorphism among 295 HLA-A alleles (IMGT/HLA release 1.14). The 21
CPFRPs thus identified are then classified into virtual pockets for each peptide
residue, as shown in Fig. 1.
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Table 1
List of known HLA supertypes

Peptide Supertypes A∗0201 A∗0202 A∗0203 A∗0206 A∗6802 Reference

LLFNILGGWV A2 b b b b b (12)
YLVAYQATV A2 b b b b b (12)
KVAELVHFL A2 b b b b b (13)
FLWGPRALV A2 b b b b b (13)
FLLLADARV A2 b b b b b (12)
IMIGVLVGV A2 b b b b b (13)
KIFGSLAFL A2 b b b b nb (13)
CLTSTVQLV A2 b b b b nb (13)
RLIVFPDLGV A2 b b b b nb (12)
YLQLVFGIEV A2 b b b b nb (13)
LLTFWNPPV A2 b b b b nb (13)
VLVGGVLAA A2 b b b b nb (12)
WMNRLIAFA A2 b b b nb b (12)
DLMGYIPLV A2 b nb b b b (12)
ILHNGAYSL A2 b b b nb nb (13)
YLSGANLNL A2 b b b nb nb (13)
VMAGVGSPYV A2 b b b nb nb (13)
ILAGYGAGV A2 b b b nb nb (12)
LMTFWNPPV A2 b nb b b nb (13)
YLVTRHADV A2 b nb b b nb (12)
HMWNFISGI A2 b nb b b nb (13)
YLLPRRGPRL A2 b nb b b nb (12)
LLFLLLADA A2 b b nb nb nb (12)
LLTFWNPPT A2 b nb b nb nb (13)
ALCRWGLLL A2 b nb b nb nb (12)

Peptides with known binding or nonbinding information are available for five HLA-A alleles.
b, binder; nb, nonbinder.

2.4. HLA Supertypes and Virtual Binding Pockets of CPFRP

The HLA-A2 supertype data for 25 peptides covering A∗0201, A∗0202,
A∗0203, A∗0206, and A∗6802 are mapped manually to virtual pockets made
of CPFRP in Fig. 1. Specific residue at CPFRP is assigned for each HLA
allele with known supertype data. The visual representation of supertype-
like function for known A2 supertypes along with structurally meaningful
virtual pockets consisting of CPFRP provides structural insight into HLA
supertype-like function.
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Fig. 1. A graphical representation of human leukocyte antigen (HLA)-A2 super-
types with peptides binding to specific HLA alleles is mapped to critical polymorphic
functional residue positions (CPFRP) for each of these alleles (Red, nonbinder; Green,
binder).

3. Results
Table 1 summarizes 25 peptides with known binding/nonbinding data to

A∗0201, A∗0202, A∗0203, A∗0206, and A∗6802. These peptides bind to more
than one HLA allele, and thus, they show overlapping function with two or
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more HLA alleles. Six of these peptides bind to all the five alleles, and eight
of these peptides bind to any four of these alleles (Table 1). Table 1 also
summarizes that eight peptides bind any three of these alleles and three peptides
bind any two of these alleles. Overall, all the 25 peptides show overlapping
function with at least two alleles.

Figure 1 shows the graphical representation of 25 peptides binding or
nonbinding with A∗0201, A∗0202, A∗0203, A∗0206, and A∗6802. Figure 1
also shows the mapping of each HLA allele to the 21 CPFRPs with their
corresponding residues. Among alleles, A∗0201, A∗0202, A∗0203, A∗0206, and
A∗6802, 33% (seven) of CPFRP show variations. However, 66% (14) show no
variation among A∗0201, A∗0202, A∗0203, A∗0206, and A∗6802 at the CPFRP.
The virtual pockets formed by the CPFRP are shown for each peptide residue
position in Fig. 1. This comprehensive mapping between peptides, alleles,
function, CPFRP, and virtual pockets is aimed at explaining the overlapping
functional property in HLA-A2 supertypes.

4. Discussion
More than 1,800 HLA alleles have been defined (1). Therefore, the number

of theoretically possible combinations of HLA–peptide complexes is extremely
large. However, the immune system maintains a homogenous balance by
specific selection, degeneration, and discrimination (self/non-self) of short
peptides using HLA molecules. Although, HLA molecules are polymorphic
in ethnic population, they exhibit a substantial amount of functional overlap
through the phenomenon of “HLA supertypes,” where members bind similar
peptides and yet display distinct repertoires. A number of “HLA supertypes”
have already been defined using binding data (Table 1). Table 1 shows six
peptides binding to all members of the A2 supertype (A∗0201, A∗0202, A∗0203,
A∗0206, and A∗6802). The functional overlap between different members of
the supertype is interesting. These also show several peptides binding to some
members but not all members of the A2 supertypes (Table 1).

The concept of HLA supertypes is that alleles belonging to supertypes bind
a highly shared set of peptides; in principle, it should be possible to predict
peptide binding of other members of a supertype using experimental results
based on just one member of the type. However, as illustrated in Table 1, this
promise does not hold true in the major supertype A2. Hence, the binding of
peptides to different members of the A2 supertype is combinatorial in selection
and degeneration. Moreover, this grouping is inconclusive, given the known
number of HLA alleles. If the molecular basis for supertype-like function of
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HLA molecules is known, extrapolation of supertype function to other HLA
molecules will be trivial.

In Fig. 1, the A2 supertypes (A∗0201, A∗0202, A∗0203, A∗0206, and
A∗6802) are mapped to their corresponding CPFRP residues. This provides
a graphical visualization of four groups of HLA supertypes with the CPFRP
residues. For the five HLA alleles, the residues at seven CPFRP (9, 63, 66, 70,
74, 152, and 156) show residue-level changes. However, residues at 14 CPFRPs
(7, 24, 35, 73, 76, 77, 80, 81, 97, 99, 114, 116, 163, and 167) are identical
among A∗0201, A∗0202, A∗0203, A∗0206, and A∗6802. The functional overlap
among these alleles is partly due to the conservation at the 14 CPFRP. The
difference in function among these alleles for some of the peptides given in
Fig. 1 is due to the variations at the CPFRP.

Figure 1 also shows the virtual pockets defined for each peptide residue
position using CPFRP residues. Data show that each of the eight virtual pockets
(1, 2, 3, 4, 5, 6, 7, and 9) have at least one mutating residues at the CPFRP. This
accounts for the subtle changes associated with the peptide-binding function.
In an attempt to explain the difference in peptide-binding function of four
groups of peptides with the five alleles, we mapped functional information with
CPFRP residues and virtual pockets.

Six peptides in G1 (group 1) bind all the five alleles (Fig. 1). These peptides
show functional overlap with these alleles, exhibiting supertype-like property.
This implies that the residue-level changes at the seven CPFRPs are insensitive
to peptide binding in these peptides. However, this is not strictly true for
peptides in G2 (group 2), G3 (group 3), and G4 (group 4), as shown in Fig. 1.

HLA-A∗0201 and HLA-A∗0202 show 156L→156W mutation and residue
156 is involved in virtual pockets 3, 4, and 6. The involvement of 156 is deter-
ministic for peptide binding in one peptide in G2, four peptides in G3, and two
peptides in G4 (Fig. 1). Comparison of A∗0202 and A∗0203 with A∗0201 shows
156L→156W between A∗0201 and A∗0202 and 9F→9Y between A∗0201
and A∗0203. Between A∗0201 and A∗0206, 152V→152E and 156L→156W
changes are observed. These changes at 9 [AND, OR] 152 [AND, OR] 156
affect binding of peptides to A∗0202, A∗0203, and A∗0206 despite their binding
to A∗0201. Comparison of A∗6802 with A∗0201 in Fig. 1 shows changes at six
positions (9, 63, 66, 70, 74, and 156). Thus, 17 peptides that bind to A∗0201 are
nonbinders to A∗6802. These data indicate that residues at CPFRP determine
functional overlap between alleles in A2 supertype. However, it is important to
generate mapping matrices incorporating functional overlap at multiple layers
for gathering a more clear picture of “supertype-like” function in future inves-
tigations.
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5. Conclusion
HLA–peptide binding is useful in the design of peptide vaccine candi-

dates, immunotherapeutic targets, and diagnostics agents. The theoretically
possible combinations are overwhelmingly large. However, the functional
overlap between alleles occurs at the level of supertypes. An understanding of
their structural principles has a significant role in generating supertypes from
sequence. Here, we show that the 21 CPFRPs have a role to play in determining
overlapping function between two or more alleles. The 14 conserved CPFRPs
explain overlapping function, and the 7 nonconserved CPFRPs explain nonover-
lapping function. We hope to create a much clear picture of this phenomenon
in future studies.
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Definition of MHC Supertypes Through Clustering
of MHC Peptide-Binding Repertoires

Pedro A. Reche∗ and Ellis L. Reinherz

Summary

Identification of peptides that can bind to major histocompatibility complex (MHC) molecules
is important for anticipation of T-cell epitopes and for the design of epitope-based vaccines.
Population coverage of epitope vaccines is, however, compromised by the extreme polymorphism
of MHC molecules, which is in fact the basis for their differential peptide binding. Therefore,
grouping of MHC molecules into supertypes according to peptide-binding specificity is relevant
for optimizing the composition of epitope-based vaccines. Despite the fact that the peptide-
binding specificity of MHC molecules is linked to their specific amino acid sequences, it is
unclear how amino sequence differences correlate with peptide-binding specificities. In this
chapter, we detail a method for defining MHC supertypes based on the analysis and subsequent
clustering of their peptide-binding repertoires

Key Words: MHC; supertypes; clustering; peptide-binding repertoire

1. Introduction
Major histocompatibility complex (MHC) molecules play a key role in the

immune system by capturing peptide antigens for display on cell surfaces.
Subsequently, these peptide–MHC (pMHC) complexes are recognized by
T cells through their T-cell receptors (TCRs). MHC molecules fall into two
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major classes, MHC class I (MHCI) and MHC class II (MHCII). Antigens
presented by MHCI and MHCII are recognized by two distinct sets of T cells,
CD8+ T and CD4+ T cells, respectively (1). Because T-cell recognition is
limited to those peptides presented by MHC molecules, prediction of peptides
that can bind to MHC molecules is important for anticipating T-cell epitopes
and designing epitope-based vaccines (2–4). Furthermore, the availability of
computational methods that can readily identify potential epitopes from primary
protein sequences has fueled a new epitope discovery-driven paradigm in
vaccine development.

A major complication to the development of epitope-based vaccines is the
extreme polymorphism of the MHC molecules. In the human, MHC molecules
are known as human leukocyte antigens (HLAs), and there are hundreds of
allelic variants of class I (HLA I) and class II (HLA II) molecules. These HLA
allelic variants bind distinct sets of peptides (5) and are expressed at vastly
variable frequencies in different ethnic groups (6). Consequently, the potential
population coverage of epitope-based vaccines is greatly compromised. Interest-
ingly, it has been noted that some HLA molecules can bind largely overlapping
sets of peptides (7,8). Therefore, grouping of MHC molecules into supertypes
according to peptide-binding specificity is of relevance for the formulation of
epitope vaccines providing a wide population coverage.

The first supertypes were defined by Sidney, Sette, and co-workers (7,8)
(hereafter Sidney–Sette et al.) upon inspection of the reported peptide-binding
motifs of individual HLA alleles. However, the relationships between peptide-
binding specificities of HLA molecules may be too subtle to be defined by
visual inspection of these peptide-binding motifs. Furthermore, such sequence
patterns have proven to be too simple to describe the binding ability of a peptide
to a given MHC molecule (9,10). In view of these limitations, we developed an
alternative method to define MHC supertypes by clustering the peptide-binding
repertoire of MHC molecules. The core of the method consists of the generation
of a distance matrix whose coefficients are inversely proportional to the peptide
binders shared by any two MHC molecules. Subsequently, this distance matrix
is fed to a phylogenic clustering algorithm to establish the kinship among
the distinct MHC peptide-binding repertoires. The peptide-binding repertoire
of any given MHC molecule is unknown, and thereby, defining supertypes
through this method requires the estimation of the peptide-binding repertoire of
MHC molecules. In this chapter, we will use position-specific scoring matrices
(PSSMs) as the predictor of peptide–MHC binding (11,12) and describe in
detail the generation of supertypes using, for example, a selection of HLA class
I (HLA I) molecules for which PSSMs are readily available.



Definition of MHC Supertypes 165

2. Materials
2.1. Prediction of Peptide–MHC Binding Repertoires

We consider the peptide-binding repertoire of any MHC molecule as the
subset of peptides predicted to bind from a reference set consisting of a random
protein of 1,000 amino acids. A selection of public online resources that can
be used for the prediction of peptide–MHC binding is summarized in Table 1.
In our study PSSMs derived from aligned MHC ligands as the predictors of
peptide–MHC binding (11,12). In this approach, the binding potential of any
peptide sequence (query) to the MHC molecule is determined by its similarity
to a set of known peptide–MHC binders and can be obtained by comparing the
query to the PSSM. Prediction of peptide–MHC binding is threshold-dependent,
and here we use the same threshold for all MHC molecules. Thus, the size of
the peptide-binding repertoire of all MHC molecules is considered to be same
(same number of peptides).

2.2. Supertype Construction

MHC supertypes are derived following the general scheme illustrated in
Fig. 1 . First, the overlap between the predicted peptide-binding repertoires (see
Section 2.1) of any two MHC molecules, pMHCi and pMHCj , is computed as
the number of peptide binders shared by the two molecules. Let that number
be nij . Subsequently, a distance coefficient (dij) is defined as follows:

dij = N −nij� (1)

where N is the size of the peptide-binding repertoire of the MHC molecule.
Thus, if the peptide-binding repertoire between two MHC molecules is identical,
then dij = 0. Alternatively, if they share no peptides in common, dij will match
the size of the binding repertoire, N . Through the repetition of this process
over all distinct pairs of MHC molecules, a quadratic distance matrix is derived
containing the dij coefficients for all distinct pairs of MHC molecules. Once the
distance matrix is obtained, we use the Phylogeny Inference Package (PHYLIP;
http:// evolution.genetics.washington.edu/phylip.html) (13) to generate a phylo-
genic tree where the MHC molecules appear clustered according to their
peptide-binding specificity. Specifically, within the PHYLIP package one must
use applications such as kitsch and neighbor that take distance matrices as input.
The kitsch application uses a Fitch–Margoliash criterion and assumes an evolu-
tionary clock (14). On the other hand, the neighbor application uses the popular
neighbor-joining method to derive an unrooted tree without the assumption of a
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Fig. 1. Strategy to define major histocompatibility complex (MHC) supertypes.
MHC supertypes are identified as follows: (1) estimate number of common peptides,
nij , between the binding repertoires of any two MHC molecules, pMHCi and pMHCj;
(2) obtain a distance matrix whose coefficients, dij , are inversely proportional to
the peptide-binding overlap between any pair of MHC molecules; and (3) derive a
dendrogram using a phylogenic clustering algorithm to visualize MHC supertypes
(groups of MHC molecules with similar peptide-binding specificity). N is the size of
the peptide-binding repertoire of the MHC molecule.

clock (15). For instance, to generate a tree using the neighbor-joining algorithm
method one can use the command:

echo Y � neighbor > /dev/null�

This command will generate a tree from a distance matrix that must be named
as infile using the default options of the neighbor application. Likewise, one
may use similar commands to generate trees using other applications. In any
case, these applications will generate two files, one named outfile displaying the
tree and another named treefile describing the tree in NEWICK format, which
can be used to visualize and manipulate the tree using third party applications
such as TREEVIEW (http:// taxonomy.zoology.gla.ac.uk/rod/treeview.html).

3. Methods
3.1. HLA I Supertypes

Definition of MHC supertypes using the method described here requires
the estimation of the peptide-binding repertoire of the MHC molecules using
predictors of peptide–MHC binding. The prediction of peptide–MHCII binding
is generally less reliable than that of peptide–MHCI binding (12). Therefore, to
illustrate the definition of MHC supertypes, we focused on 55 HLA I molecules
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(human MHCI) for which we can readily predict their peptide-binding reper-
toires using PSSMs (see Section 2). Given that MHCI ligands are usually nine
residues in length, we selected PSSMs for the prediction of binders of that same
size (nine residues). In previous studies we have shown that depending on the
specific MHCI molecule, the accuracy of peptide–MHCI binding predictions
is optimal by considering as binders the top 2–5% scoring peptides (2–5%
threshold) within a protein query (12). Here we have estimated the peptide-
binding repertoire of the selected HLA I molecules using a 2% threshold. Thus,
following the method described above with a Fitch and Margoliash clustering
algorithm (14) (Section 2.2; kitsch application), we generated the phylogenic
tree, which is shown in Fig. 2. In this tree, HLA I molecules with similar
peptide-binding specificity (large overlap in their peptide-binding repertoires)
branch together in groups or supertypes. The relationship between the peptide-
binding specificities of HLA I molecules is extensive, and although affinities
are mostly confined to alleles belonging to the same gene, they also reach to
alleles belonging to different genes (Fig. 2, B15 cluster; B∗4002 and A∗2902;
and A∗2402 and B∗3801). We clearly identified the classic A2, A3, B7, B27,
and B44 supertypes previously defined by Sidney–Sette et al., as well as three
new potential supertypes, BX, AB, and B57 (Fig. 2). Furthermore, this analysis
indicates that classic HLA I supertypes may be larger than that previously
thought. For instance, the A2 supertype would also include the A0207, A0209,
and A0214, and the A3 supertype will also include A∗6601.

3.2. Combined Phenotypic Frequency of HLA I Supertypes

HLA I-restricted peptides are the targets of CD8+ cytotoxic T lymphocytes
(CTLs). The population protection coverage (PPC) of a vaccine composed of
CTL epitopes is given by the combined phenotypic frequency (CPF) of the
HLA I molecules restricting the epitopes, and it can be computed from the gene
and haplotype frequencies (16). Using the allelic and haplotype frequencies
reported by Cao et al. (17) corresponding to five major American ethnic groups
(Black, Caucasian, Hispanic, Native American, and Asian), we have computed
the CPF for the HLA I supertypes defined in the previous section (Section 3.1),
and the values are tabulated in Table 2 . Targeting HLA I supertypes for the
prediction of promiscuous peptide binders allows to minimize the total number
of predicted epitopes without compromising the population coverage required
in the design of multi-epitope vaccines. However, including many distantly
related HLA I molecules in the supertypes may result in too few or no epitopes
predicted to bind to all the alleles included in the supertype. Therefore, for
the CPF calculations, we have limited the composition of HLA I supertypes to
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Fig. 2. Human leukocyte antigen (HLA) I supertypes. This figure shows an unroot
dendrogram reflecting the relationships between the peptide-binding specificities of
HLA I molecules. The closer the HLA I alleles branch, the larger the overlap between
their peptide-binding repertoires. Groups of HLA I alleles with similar peptide-binding
specificities branch together defining supertypes (shaded groups).

include only those HLA I alleles with ≥20% peptide-binding overlap (pairwise
between any pair of alleles).

The A2, A3, and B7 supertypes have the largest CPF in the five studied ethnic
groups, providing a CPF close to 90%, regardless of ethnicity. To increase
the CPF to 95% in all ethnicities, it is necessary to include at least two more
supertypes. Specifically, the supertypes A2, A3, B7, B15, and A24 or B44
represent the minimal supertypic combination providing a CPF ≥95%. These
results indicate that as few as five epitopes restricted by the mentioned HLA I
supertypes may be enough to develop a vaccine eliciting CTL responses in the
whole population, regardless of ethnicity.
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4. Conclusions
HLA molecules are represented by hundreds of allelic variants displaying

distinct peptide-binding specificities, and grouping them into supertypes is
relevant for developing epitope-based vaccines with a wide PPC. The peptide-
binding specificity of HLA molecules stems from the specific amino acids lining
their binding groove, and consequently, supertypes may be defined from struc-
tural analysis (18–20). However, it is not always clear how amino acid sequence
differences among HLA molecules translate into distinct peptide-binding speci-
ficities. Indeed, structure-based methods for the prediction of peptide–MHC
binding are still in their infancy. Therefore, in thischapter, we described a
method for defining HLA supertypes based on the analysis and subsequent
clustering of their predicted peptide-binding repertoires. Furthermore, we have
shown that the method can identify experimentally defined HLA I supertypes,
suggesting in addition new potential relationships between the peptide-binding
specificity of HLA I molecules. When the predictor of peptide–MHC binding is
a specificity matrix such as a PSSM, clustering of the HLA molecules according
to peptide-binding specificity may alternatively be achieved by comparison of
the matrix coefficients (21). However, it is important to stress that the clustering
method described here to derive supertypes can be applied in combination with
any predictor of peptide–MHC binding. Although, not indicated in this chapter,
minor differences in the defined supertypes appear depending on the phylo-
genic algorithm used to cluster the HLA I molecules. There are also two other
limitations to the method described here. First, the method is limited by both
the quality and availability of the peptide–MHC binding predictors. Thus, we
do not discard the possibility that the fine structure of the supertypes may suffer
some changes as new and better predictors of peptide–MHC binding develop.
The second limitation is that we have considered the size of the peptide-binding
repertoire of all MHC molecules to be the same. However, that might not
always be the case. Indeed, it has been noted that, for instance, the A∗0201
appears to be quite promiscuous, binding larger sets of peptides than the other
HLA I molecules (Azouz, Reinhold, and Reinherz, unpublished results).
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Grouping of Class I HLA Alleles Using Electrostatic
Distribution Maps of the Peptide Binding Grooves

Pandjassarame Kangueane and Meena Kishore Sakharkar

Summary

Human leukocyte antigen (HLA) molecules involved in immune function by binding to short
peptides (8–20 residues) have different sequences in different individuals belonging to distinct
ethnic population. Hence, the peptide-binding function of HLA alleles is specific. Class I HLA
alleles (alternative forms of a gene) are associated with CD8+ T cells, and their allele-specific
sequence information is available at the IMGT/HLA database. The available sequences are one-
dimensional (1D), and the peptide-binding functional inference often requires 3-dimensional (3D)
structural models of respective alleles. Hence, 3D structures were constructed for 1,000 class I
HLA alleles (310 A, 570 B, and 120 C) using MODELLER (a comparative protein modeling
program for modeling protein structures). The electrostatic distribution maps were generated for
each modeled structure using Deep View (Swiss PDB Viewer Version 3.7). The 1,000 models
were then grouped into different categories by visual inspection of their electrostatic distribution
maps in the peptide binding grooves. The distribution of the models based on electrostatic
distribution was 30% negative (300), 1% positive (12), 8% neutral (84), and 60% (604) mixed
(random mixture of negative, positive, and neutral). This grouping provides insight toward the
inference for functional overlap among HLA alleles.

Key Words: HLA; alleles; grouping; peptide binding groove; electrostatic potential; negative;
positive; neutral

1. Introduction
Human leukocyte antigen (HLA) proteins are involved in T-cell-mediated

immune response by binding to short peptides of 8–20 residues long (1,2). The
binding of HLA molecules to peptides is highly specific. However, HLA alleles
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are highly polymorphic among different ethnic groups, and more than 1,500
HLA alleles are known (3). Therefore, HLA–peptide binding is combinational
in nature. Nonetheless, peptide binding is determined by groove geometry and
chemistry.

Zhang et al. (4) grouped HLA alleles using structural pockets.
Chelvanayagam (5,6) classified class I and DR alleles using pocket information.
Recently, Zhao et al. (7), Kangueane et al. (8), and Guan et al (9) developed
A–F pocket systems for grouping HLA molecules. Doytchinova et al. (10) used
molecular interaction fields (MIF), hierarchical clustering (HC), and principal
component analysis (PCA), and Lund et al. (11) used clustering procedures for
grouping HLA alleles into putative supertypes (where different members bind
similar peptides, yet exhibiting distinct repertoires). Here, we describe a novel
methodology to group HLA alleles using electrostatic distribution map of the
peptide binding groove in HLA molecules.

2. Methodology
The procedure used in this analysis is outlined in Fig. 1 using a work flow

diagram. The work flow diagram describes the different steps involved in HLA
modeling, electrostatic calculation for the model, and grouping of HLA alleles.

2.1. HLA modeling

HLA modeling consists of (1) identification of suitable templates from
Protein databank (PDB), (2) selection of structural templates, (3) target-
to-template alignment, (4) model building, and (5) generation of 3D
models. Structural templates were searched in the PDB using PSI-BLAST
(http://www.ncbi.nih.gov/blast) at an E value cut-off <0�01. Template struc-
tures with the highest similarity to the query sequence were chosen for
homology modeling using MODELLER (a comparative protein modeling
program for modeling protein structures). The models thus obtained were
further checked for errors using PROSA-II (using energy calculations—
http://www.came.sbg.ac.at/Services/prosa.html), PROCHEK (a program to
check the stereochemical quality of protein structures), and WHATIF (http://
swift.cmbi.kun.nl/whatif/).

2.2. Electrostatic distribution maps

The electrostatic distribution maps were calculated for each modeled
structure using Coulomb’s Law (the force between two point charges is directly
proportional to the product of the charges and inversely proportional to the
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Fig. 1. Work flow diagram showing human leukocyte antigen (HLA) modeling and
electrostatic calculation.

square of the distance between them) as implemented in Deep View (Swiss
PDB Viewer Version 3.7).

2.3. Grouping of models

The models were then grouped by visual inspection based on the nature of
color in the binding groove. Red color refers to electronegative groove, Blue
to electropositive groove, White to neutral groove, and Mixed for a mixture of
red, blue, and white groove (Table 1).

3. Results
Table 1 summarizes the grouping of 1,000 class I HLA models (310 HLA-A,

570 HLA-B, and 120 HLA-C) using the type of electrostatic potential in the
peptide binding groove. We used negative (red color), positive (blue color), and
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Table 1
Distribution of human leukocyte antigen (HLA)-A, HLA-B, and HLA-C alleles
using electrostatic distribution of the peptide binding grooves

Combination HLA-A HLA-B HLA-C Total

G1 R-R-R 106 (34%) 183 (32%) 11 (9.0%) 300 (30%)
G2 B-B-B 1 (0.5%) 9 (1.5%) 2 (2.0%) 12 (1.2%)
G3 W-W-W 51 (16%) 26 (4.5%) 7 (5.5%) 84 (8.4%)
G4 R-B-W 71 (23%) 57 (10%) 1 (1.0%) 129 (12.9%)
G5 B-R-W 24 (8.0%) 11 (2.0%) 2 (2.0%) 37 (3.7%)
G6 W-R-B 5 (1.5%) 26 (4.5%) 22 (18%) 57 (5.7%)
G7 R-W-B 27 (9.0%) 230 (40%) 70 (58%) 327 (33%)
G8 B-W-R 20 (6.5%) 26 (4.5%) 2 (2.0%) 48 (4.8%)
G9 W-B-R 5 (1.5%) 2 (1.0%) 3 (2.5%) 10 (1%)
Total 310 (100%) 570 (100%) 120 (100%) 1000 (100%)

G1 to G9 = groups 1 to groups 9; R, Red; B, Blue; W, White; Red means negative; Blue
means positive; and W means neutral. The peptide binding groove is divided into three regions
with respect to the binding peptide (N-terminal, C-terminal, and central) by visual inspection of
their potential maps. The configuration W-W-W denotes white in the entire groove signifying
neutral potential map in the groove. The configuration R-B-W denotes N-terminal red, C-
terminal white and central blue in the entire groove signifying negative, neutral, and positive,
respectively.

neutral (white color) in this study for grouping. Red is denoted by “R,” blue by
“B,” and white by “W” in Table 1. Each peptide binding groove is divided into
three regions with reference to the N-terminal, C-terminal, and middle region
of the peptide binding the groove (Fig. 2). The group G1 is classified as R-R-R,
where the groove is completely red and electronegative. Table 1 summarizes
that 30% of 1,000 class I models have electronegative binding grooves, and
this group is predominant among HLA-A alleles. Interestingly, 33% of HLA
models belong to G7 with R-W-B configuration in the groove, and majority of
the B and C alleles are of this type. Thus, 1,000 class I models are grouped into
nine groups using the type of electrostatic maps at the binding groove. This
grouping is useful in understanding the overlapping peptide-binding function
exhibited by HLA alleles.

4. Discussion
HLA alleles have distinct sequences. These alleles demonstrate specific

peptide-binding function. However, functional overlaps are also seen among
them (8). Homology models of 1,000 HLA class I molecules were constructed
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Fig. 2. Grouping of human leukocyte antigen (HLA) alleles into negative (red),
positive (blue), neutral (white), and mixed (red, blue, and white) models.

using MODELLER. Electrostatic potentials for each model were then calcu-
lated using Deep View (Swiss PDB Viewer Version 3.7), and the electrostatic
distribution maps of the peptide binding groove in HLA alleles were generated
as shown in Fig. 2. Some HLA alleles have electronegative distribution, and
some others have electropositive distribution. Interestingly, some also have
neutral and others have a mixture of negative, positive, and neutral distribution
in the groove. The grouping of alleles based on the electrostatic distribution
of the HLA binding groove shows 300 negative (30%), 12 positive (1%),
84 neutral (8%), and 604 mixed (random mixture of negative, positive, and
neutral) (60%) potential maps (Table 1). These models are thereafter referred as
negative, positive, neutral, and mixed models. The distribution of HLA alleles
with 30% negative, 1% positive, and 8% neutral models is interesting. This
provides insight toward functional overlap in peptide binding to HLA alleles.

Table 1 summarizes that 34% HLA-A alleles and 32% HLA-B alleles are
negative models. We divided the 604 (60%) mixed models into six groups
(Table 1) with respect to the peptide binding in the groove (N-terminal,
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C-terminal, and central regions of the peptide). The 60% mixed models among
A, B, and C alleles show extensive variation in the peptide binding groove.
In this category, 40% of B alleles have R-W-B configuration [N–terminal red
(negative)’ C–terminal blue (positive); central white (neutral)] in the groove.

The grouping of 1,000 HLA alleles into nine functional groups based on
the electrostatic potential maps of the peptide binding grooves finds utility in
the understanding of functional overlaps between alleles. This study comple-
ments the work done by Zhang et al. (4), Chelvanayagam (5,6), Zhao et al.
(7), Kangueane et al. (8), Guan et al. (9), Doytchinova et al. (10), and
Lund et al. (11).

5. Conclusion
HLA alleles are polymorphic. Hence, the peptide-binding specificity varies in

a combinatorial manner. However, functional overlap between alleles is shown
for several HLA supertypes. Previous studies have shown HLA functional
overlap between alleles using several distinct methods (4–11). Here, we group
1,000 HLA class I alleles into different categories by visual inspection of their
electrostatic distribution in the peptide binding grooves. The distribution is 300
negative (30%), 12 positive (1%), 84 neutral (8%), and 604 mixed (random
mixture of negative, positive and neutral) models (60%). The groupings find
utility in T-cell epitope design for peptide vaccines, immunotherapeutics, and
diagnostics agents.
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Prediction of Peptide–MHC Binding Using Profiles

Pedro A. Reche∗ and Ellis L. Reinherz

Summary

Prediction of peptide binding to major histocompatibility complex (MHC) molecules is a
basis for anticipating T-cell epitopes. Peptides that bind to a given MHC molecule are related by
sequence similarity. Therefore, a position-specific scoring matrix (PSSM)—also known as profile—
derived from a set of aligned peptides known to bind to a given MHC molecule can be used
as a predictor of both peptide–MHC binding and T-cell epitopes. In this approach, the binding
potential of any peptide sequence (query) to the MHC molecule is determined by its similarity to
a set of known peptide–MHC binders and can be obtained by comparing the query to the PSSM.
Following structural considerations of the peptide–MHC interaction, we will describe here how to
derive alignments and PSSMs that are suitable for the prediction of peptide–MHC binding.

Key Words: PSSM; MHC; binding; epitopes; profile; prediction

1. Introduction
T-cell immune responses are triggered by the recognition of foreign peptide

antigens bound to cell membrane-expressed major histocompatibility complex
(MHC) molecules (1–3). Because T-cell recognition is limited to those peptides
presented by MHC molecules, prediction of peptides that can bind to MHC
molecules is the basis for the anticipation of T-cell epitopes (4–6). Peptides
binding to MHC molecules must fit into a specific chemical and physical
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environment conditioned by polymorphic residues in the MHC molecule (7–9).
Consequently, distinct MHC molecules have distinct peptide-binding speci-
ficities (9). In addition, the peptides that bind to the same MHC molecule are
related by sequence similarity. Sequence patterns reflecting amino acid prefer-
ences in peptide–MHC binders (anchor residues) are routinely used for defining
peptide–MHC binding motifs and prediction of peptide–MHC binding (10,11).
For example, the binding motif of the human MHC class I (MHCI) molecule
A∗0201 may be described by the following sequence pattern:

X-[AILMVT]-X6-[AILMVT]�

This motif indicates that A∗0201 will preferentially bind peptides of nine
residues having an Ala, Ile, Leu, Met, Val, or Thr residue at positions 3 and
9, which act as anchor positions. However, the binding ability of a peptide to
a given MHC molecule cannot be explained by the presence of a few anchor
residues, and indeed, non-anchor residues contribute to peptide–MHC binding
(12,13). Instead, a position-specific scoring matrix (PSSM) or profile created
from a set of aligned sequences of peptide–MHC binders provides a better
alternative for capturing the complexity of peptide–MHC binding motifs. These
PSSMs can be also used to quantify the relatedness of any peptide to the known
peptide–MHC binders, thus serving as predictors of peptide–MHC binding.

PSSMs were first introduced by Gribskov et al. (14) for the detection
of distantly related proteins and are now widely used for the representation
and identification of sequence motifs (15,16). In essence, a PSSM consists
of a table containing a form of frequency count of each one of the 20
amino acids observed in every column of an alignment divided by the corre-
sponding expected frequency of that amino acid in the background (usually
the frequency of the amino acid in a reference database). In addition, methods
for the derivation of profiles also provide corrections for missing data and
sequence redundancy in the alignments, which are essential to increase the
detection limits of PSSMs (17,18). Missing and/or low counts in the align-
ments are corrected using pseudo-counts estimated from substitution matrices
(17), whereas sequence redundancy is corrected by applying sequence weights
before the estimation of the amino acid counts.

A PSSM is a good descriptor of the peptide–MHC binding motif, only if
the peptide–MHC binders are aligned by structural and/or sequence similarity.
There are two types of MHC molecules, class I (MHCI) and class II (MHCII),
which actually present peptide antigens for recognition by two distinct sets of
T cells, CD8+ and CD4+, respectively (7). MHCI and MHCII molecules bind
peptides in a different mode, and thus, for aligning MHCI and MHCII ligands,
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we devised two distinct procedures that are compatible with the structural
and molecular basis of the peptide–MHCI and peptide–MHCII interactions. In
thischapter, we will describe these two procedures, and we will illustrate the
prediction of peptide–MHC binding through the use of PSSMs.

2. Materials
2.1. Databases

Prediction of peptide–MHC binding using profiles require the availability of
the sequence of peptides known to bind to MHC molecules. These sequences
can be retrieved from any of the available public databases of MHC ligands
(Table 1). However, in this study, we used the EPIMHC database (19) as the
only source of MHC ligands (Table 1). All peptides in EPIMHC are MHC
binders, and their binding strength is reported as unknown, low, moderate, or
high. Importantly, the EPIMHC database (http://bio.dfci.harvard.edu/epimhc/)
has been designed to facilitate the query, extraction, and analysis of data by
third parties. To illustrate the prediction of peptide–MHC binding using PSSMs,
we selected from the EPIMHC the sequences of 178 and 80 peptides annotated
to bind with high affinity to A∗0201 (human MHCI molecule) and DRB1∗0401
(human MHCII molecule), respectively. The protein sources of the peptides
were also retrieved from the EPIMHC database. All A∗0201 peptide binders
had a length of nine residues (9 mers), whereas the DRB1∗0401 peptide binders
were variable in length with at least nine residues. These sets of peptides are
available as supplemental data from the site http://bio.med.ucm.es/methods/.

2.2. Software

The applications used in this study are indicated in Table 2. All these
packages are freely available for academia users and were compiled and/or
under the LINUX operating system. The core applications used for deriving
alignments and profiles from MHC ligands are PROFILEWEIGHT (18),
BLIMPS (20), and MEME (21). In addition to these applications, we used
a set of Perl scripts to format data and/or handle the applications described
above. These scripts are summarized in Table 2, and their use will be described
elsewhere in Methods.

2.3. Leave-One Out Cross-Validation

Performance of PSSMs predicting peptide–MHC binding was evaluated
using a leave-one out cross-validation (LOOCV). Briefly, for a set of peptides
n known to bind to a given MHC molecule, a PSSM is generated from n – 1
peptides and used to test the binding of the remaining peptide (target peptide).
This process is repeated n times until the binding of each peptide is tested.
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3. Methods
3.1. Structural Alignments of MHCI and MHCII ligands

Capturing the complexity of the peptide–MHC binding motif in the form
of a PSSM that can be used for the prediction of peptide–MHC binding
requires the alignment of known MHC ligands by structural and/or sequence
similarity. Peptides bound to MHCI molecules are in an extended confor-
mation with several side chains accommodated in the binding pockets of the
MHCI binding groove, and the N-terminal and C-terminal pinned into the
groove (7,8) (Fig. 1A). As a consequence, MHCI ligands are of short length
(8–11 residues), and proper structural alignment can be best accomplished by
piling up peptides that have the same length (22). In contrast, the peptide
binding groove of MHCII molecules is open, allowing both the N-terminal and
C-terminal of a peptide to extend beyond the binding groove (7,8) (Fig. 1B).
Consequently, peptides bound to MHCII molecules display a great variability
in length (9–22 residues). Nevertheless, only a peptide core of nine residues
fits into the MHCII binding groove per se and is responsible for anchoring the
peptide to the MHCII molecule (3). This peptide core of nine residues binds in
a conserved mode across the different peptide–MHCII complexes, sitting in the
groove in an extended conformation connected through a network of hydrogen
bonds between its backbone and conserved residues in the MHCII molecule
(3,7,8,23). As a result, the peptide-binding repertoire of MHCII molecules is
broader than that of MHCI molecules, and MHCII ligands share less sequence
similarity than MHCI ligands. Poor amino acid sequence similarity between
MHCII ligands together with their great variability in sequence length makes
their alignment difficult, hampering the use of global alignment algorithms such
as CLUSTALW (24). Because alignment of the MHCII ligands requires the
identification of their binding core, we use the motif discovery program MEME
(21) for aligning them. MEME uses an expectation-maximization algorithm
in combination with a priori information to identify sequence motifs. The a
priori information we use for aligning MHCI ligands is consistent with the
interaction of peptides and MHCII molecules, namely, the existence of a single
peptide-binding register per se MHCII ligand stretching nine residues.

3.2. Generation of Alignments and PSSMs from MHCI and MHCII
Ligands

The strategy to derive alignments and profiles from known MHCI and MHCII
ligands for the prediction of peptide–MHC binding consists of three basic
steps: (i) peptide collection and subsequent subsetting by their MHC-binding
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Fig. 1. Binding of peptide ligands to major histocompatibility complex class I
(MHCI) and MHCII molecules. The figure shows the top of the molecular surface
of the antigen-presenting platform of representative human MHCI (A) and MHCII
(B) molecules as viewed by the T-cell receptor. The MHCI molecule corresponds to
HLA-A∗0201 in complex with a peptide LLFGYPVYV from HTLV-1 TAX protein
[PDB: 1HHK;(41)]. The MHCII molecule corresponds to HLA-DR1 in complex with
peptide PKYVKQNTLKLAT from influenza hemagglutinin protein [PDB:1FYT (42)].
Peptides bound to these molecules are represented by sticks to highlight the contours
of the binding groove. Note how the peptide binding groove of the MHCI molecule
is closed, and peptides bind in a manner such that both the N-terminal and C-terminal
ends of the peptide (indicated by arrows) are nested into the MHCI binding groove,
restricting their lengths to 8–11 residues. In contrast, the peptide binding groove of the
MHCII molecule is open, thereby imposing no limitation to the size of ligands, whose
N-terminal and C-terminal ends can extend beyond the binding grove. The side chains
of N-terminal and C-terminal ends of the 9-mer peptide core fitting into the MHCII
binding groove are indicated. The figure was prepared using GRASP (43).

specificity and length in the case of MHCI ligands; (ii) generation of ungapped
alignments; and (iii) generation of PSSMs from alignments. An outline of this
strategy is shown in Fig. 2 and the detailed description is as follows.

1. Peptide collection and subsetting: In the case of MHCI ligands, the
sequences must be subgrouped into files according to their MHCI-binding speci-
ficity and subsequently by sequence length. Peptides with 12 or more amino
acids bind to MHCI molecules only exceptionally, and therefore, alignments
and profiles should only be made from subsets of peptides of length 8, 9, 10,
and 11. Furthermore, given that most of the known MHCI-restricted peptides
are 9 mers (∼90%) (data not shown), we suggest to preferentially make/use
profiles from peptides of nine residues (9 mers). In the case of MHCII ligands,
sequences must be subgrouped into distinct files only by their MHCII-binding
specificity, and peptides with less than nine residues must be discarded. MHC
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Fig. 2. Overview of the strategy for defining position-specific scoring matrices
(PSSMs) from major histocompatibility complex class I (MHCI) and MHCII ligands.
The basic steps for defining PSSMs are (A) peptide collection and subsetting of peptides
by their MHC-binding specificity (x) and length (l) in the case of MHCI ligands; (B)
generation of ungapped alignments; and (C) generation of PSSMs from alignments.

ligands meeting the above criteria can be obtained using the web interface of
EPIMHC. Peptides should be saved as plain TEXT and in FASTA format.
Alternatively, the Perl script epimhc.pl can be used to retrieve peptides from
EPIMHC on the command line. For example, to create a FASTA file with all
peptides in EPIMHC binding with high affinity to HLA-A∗0201, one can use
the following command:

epimhc.pl -m ‘HLA-A∗0201’ -s 9 -b high

Likewise, the command:

epimhc.pl -m ‘HLA-DRB1∗0401’ -b high

will generate a FASTA file with all peptides in EPIMCH binding to DRB1∗0401
with high affinity. Peptides with less that seven residues will not be included
in this file.
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2. Generation of ungapped motif alignments: MHCI ligands of the same
length in the FASTA files generated in the step above are already aligned. For
aligning MHCII ligands, we use MEME with the following command:

meme mhcii_lig.fasta -protein -mod oops -nmotifs 1 -minsites 4\
-maxsites 300 -minw 9 -maxw 9 -evt 10000 > mhcii_lig.meme

where mhcii_lig.fasta -protein corresponds to each of the MHCII-specific
subsets of peptide sequences in FASTA format; -mod oops indicates that each
sequence has a binding site; -minsites 4 -maxsites 500 indicates that the motif
should contain between 4 and 500 sequences; -min 9 -maxw 9 indicates that
the size of the motif is exactly 9; and finally -evt 10000 is the expected
threshold value for a sequence to be included in the motif. The output of
MEME (mhcii_lig.meme) will contain a log-odd and a probability PSSM of
the MHCII ligands’ binding core which can readily be used for the prediction
of peptide–MHCII binding. However, for consistency with the profiles derived
from MHCI ligands, we obtain instead the motif alignment in the MEME output
using the Perl script meme2fasta.pl and built the PSSM in the next step. The
use of the script meme2fasta.pl is as follows:

meme2fasta.pl -i mhcii_lig.meme

This command will format the motif alignment in the output of MEME into
FASTA format, discarding repeated sequences. The alignment obtained with
MEME encompasses the binding core of the MHCII ligands.

3. Generation of PSSMs from alignments of MHC ligands: There are many
methods to derive profiles from alignments that differ in the sequence weighting
and in the computation of amino acid counts and pseudocounts. Here, we will
describe the generation of profiles using PROFILEWEIGHT (18) and the appli-
cations included in the BLIMPS package (17,25). In both cases, pseudocounts
are estimated using the BLOMUS62 substitution matrix-derived protein blocks
(26). To learn about the actual equations used in these packages see Thompson
et al. (18) and Henikoff and Henikoff (27). PROFILEWEIGHT uses a branch-
proportional weighting method and requires an alignment in GCG/MSF format
as input. BLIMPS PSSMs are generated through the sequential use of the
following three applications: mablock, to translate alignments from FASTA
format to BLOCK format; blweight, to apply weights to the sequences in
the alignment, and blk2pssm, to generate the actual PSSM. The application
blweight supports four distinct weighting methods: P, position-based method
(28); A, pairwise distance method (29); V, Voroni method (30), and Cn,
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clustering method (26). The generation of matrices with PROFILEWEIGHT
and BLIMPS can be facilitated using the Perl script mkmatrix.pl. For example,
the command:

mkmatrix.pl -i peptides.tfa -w pw

will convert the alignment peptides.tfa into GSF/MSF format and create a
PSSM using PROFILEWEIGHT. The PSSM will be saved under the name
peptides.pw.mtx. Likewise the command:

mkmatrix.pl -i peptides.tfa -w p

will generate a PSSM under the name peptides.p.mtx using BLIMPS and
position-based weights.

3.3. Scoring Peptide–MHC Binding Using PSSMs

PSSMs can be used to provide scores indicating the similarity (and hence
binding potential) of any peptide to the set of aligned peptides known to bind to
a given MHC molecule. These scores are computed by aligning the PSSM with
the protein segments with the same length than the width of the PSSM (length
of the alignment) and adding up the appropriate profile coefficients matching
the residue type and position in the protein segment. Scoring all peptides in an
entire protein sequence requires a dynamic algorithm that starts scoring at the
beginning of the sequence and then moves the PSSM over the entire sequence
one residue at a time to score the remaining peptides. Here, we provide the
Perl script rankpep.pl as an example of dynamic scoring algorithm. The use of
the script is as follows:

rankpep.pl -i sequence.fasta -m file.mtx

where sequence.fasta is the sequence query in FASTA format and file.mtx is
the PSSM. The output of the program is a list of all peptides in the input
sequence ranked by their score. Rank per se may, however, be insufficient to
assess whether a peptide is a potential binder. Consequently, to better address
whether a peptide might bind or not to a given MHC molecule, one should
consider scoring all the peptides in the alignment from which the PSSM was
obtained. Then, any given peptide can be considered a binder if it has a score
within the range of scores of the peptides known to bind to the relevant MHC
molecule.
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3.4. Performance of PSSMs Predicting Peptide Binding to MHCI
and MHCII Molecules

Only peptides that bind to MHC with an affinity above a necessary threshold
are able to elicit a T-cell response. Therefore, determining whether known
peptide–MHC binders can be identified among the high-scoring peptides within
their protein sources is the best way to check whether prediction of peptide–
MHC binding using PSSMs is of practical utility. Here, we have tested this
notion for two sets of peptide ligands, one consisting of high-affinity binders
to the human MHCI molecule A∗0201 (Fig. 3A) and another of high-affinity
binders to the human MHCII molecule DRB1∗0401 (DR4) (Fig. 3B). These
MHC ligands were aligned as indicated in section 3.2, and the binding of each
of the peptides in the resulting alignments to the relevant MHC molecule was
tested at different thresholds (0.5%, 1%, 2%, 3%, 4%, 5%, 10%, and 20%)
under a LOOCV (see Section 2.3). At a given threshold, a peptide is computed
as “to bind” if it is among the top scoring peptides from its protein source
at that threshold. It is known that sequence weighting increases the sensi-
tivity of profiles. Therefore, we carried out these prediction tests using PSSMs
generated with PROFILEWEIGHT which applies branch-proportional weights
(empty bars) and BLIMPS with position-based weights (black bars). The results

Fig. 3. Performance of position-specific scoring matrices (PSSMs) predicting
peptide–major histocompatibility complex (MHC) binding. Performance of PSSMs
predicting the binding of 178 peptides to A∗0201 (A) and 66 peptides to DR4 (B) was
evaluated by testing whether the peptides are predicted from their protein sources under
a leave-one out cross-validation (LOOCV). Predictions were carried out at different
thresholds (abscissa), and the percentage of correctly predicted peptides is plotted in
the figure (ordinate). PSSMs were derived using PROFILEWEIGHT (empty bars) and
BLIMPS with position-based weights (black bars).
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indicated that ≥80% of the A∗0201 peptide binders are predicted at a 2%
threshold (Fig. 3A), whereas ∼45% of the DR4 peptide binders are predicted at
this threshold (Fig. 3B). As previously reported (22,31), PSSMs derived with
BLIMPS and PROFILEWEIGHT are comparable predicting peptide binding
to A∗0201. However, for the prediction of peptide binding to DR4, PSSMs
obtained with BLIMPS applying position-based weights were significantly
better than those obtained using PROFILEWEIGHT (Fig. 3B).

4. Concluding Remarks
PSSMs are powerful tools to detect new and diverse sequences that are

functionally related to those included in the original alignment (peptides binding
to MHC molecules) and can be used to identify those peptides that can bind to
MHC molecules. Prediction of peptide–MHC binding using PSSMs appears
to be more accurate for MHCI molecules. (Fig. 3). This observation does
not necessarily indicate that the MHCII-specific PSSMs were derived from
incorrect alignments but rather could reflect the greater structurally inherent
peptide-binding promiscuity of MHCII molecules (see Section 3.1).

Prediction of peptide–MHC binding has been approached by a large array of
methods including quantitative matrices (32–34), machine learning algorithms
(MLAs) (35,36), and peptide threading (37,38). Despite the fact that direct
comparison between the various methods is not straightforward, some reports
have indicated that MLAs such as artificial neural networks yield the best
predictors of peptide–MHC binding, and it has been linked to the fact that
MLAs can model binding interferences between peptide side chains, whereas the
remaining methods, including PSSMs, assume independent binding of each side
chain. Nevertheless, independent binding is generally supported by experimental
evidence (32,39), and furthermore, considering side chain pair interactions
only results in marginal improvement peptide–MHC binding predictions (40).
Likewise, in a recent study, we have shown that PSSMs give similar or better
results than those reported for MLAs (31). Thus, there may be more disadvan-
tages than benefits when applying MLAs to the prediction of peptide–MHC
binding. Thus, unlike PSSMs, MLAs are very prone to overfit data and are very
sensitive to “dirty data.” Consequently, much care and time has to be taken
in preprocessing the data before training. Also, MLAs, as well as most data-
driven methods used for predicting peptide–MHC binding, do not account for
unseen data, instead only fitting the data they are provided with. Not surpris-
ingly, it has also been shown that simple motif matrices outperform MLAs
predictingpeptide–MHCbindingwhen the trainingsetsarecomposedofa reduced
set of samples (≤100 peptides) which is by large the most frequent scenario (4).
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Prediction of peptide–MHC binding using PSSMs is also available
at the RANKPEP web site (http://bio.dfci.harvard.edu/Tools/rankpep.html).
Currently, 88 and 50 different MHCI and MHCII molecules, respectively, can
be targeted for peptide-binding predictions in RANKPEP. This server is very
versatile providing a framework for the prediction of MHC–peptide binding
using profiles provided by the user.
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Application of Machine Learning Techniques
in Predicting MHC Binders

Sneh Lata, Manoj Bhasin, and Gajendra P. S. Raghava

Summary

The machine learning techniques are playing a vital role in the field of immunoinformatics.
In the past, a number of methods have been developed for predicting major histocompatibility
complex (MHC)-binding peptides using machine learning techniques. These methods allow
predicting MHC-binding peptides with high accuracy. In this chapter, we describe two machine
learning technique-based methods, nHLAPred and MHC2Pred, developed for predicting MHC
binders for class I and class II alleles, respectively. nHLAPred is a web server developed for
predicting binders for 67 MHC class I alleles. This sever has two methods: ANNPred and
ComPred. ComPred allows predicting binders for 67 MHC class I alleles, using the combined
method [artificial neural network (ANN) and quantitative matrix] for 30 alleles and quantitative
matrix-based method for 37 alleles. ANNPred allows prediction of binders for only 30 alleles
purely based on the ANN. MHC2Pred is a support vector machine (SVM)-based method for
prediction of promiscuous binders for 42 MHC class II alleles.

Key Words: Artificial neural network; machine learning techniques; MHC binders; support
vector machine; T-cell epitopes

1. Introduction
It is well established in literature that binding of a peptide to major histo-

compatibility complex (MHC) molecules is a prerequisite for its recognition by
T lymphocytes. Therefore, for a peptide to be a T-cell epitope, it is mandatory
that it shall first form a complex with an MHC molecule. One of the ways
to fish out such peptides (from a protein sequence) that bind to a particular
MHC molecule is to get the experimental validation done, that is, to chop off

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
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the antigenic protein in overlapping fragments and to determine the binding
characteristics of each and every peptide with the specific MHC molecule. But
the experimental identification of MHC binders is arduous, time-consuming,
and economically not feasible. Therefore, development of reliable computa-
tional methods for MHC binders prediction may reduce cost and number of
wet laboratory experiments to identify these binders. These methods are well
known as indirect methods as they predict MHC binders rather than T-cell
epitopes.

In the past, a number of methods have been developed to predict MHC
binders, broadly divided into two categories: (i) knowledge-based methods
where discrimination model are derived from known binders and (ii) ab inito
methods where discrimination models are based on the rules of MHC–peptide
interaction in three dimensions. Knowledge-based methods can be divided into
the following categories: (i) binding motifs, (ii) quantitative matrices, and (iii)
machine learning methods (1–4). In motif-based algorithm, the binding of a
peptide to an allele is examined on the basis of occurrence of specific residues
at specific position. These residues are known as anchor residues, and positions
are known as anchor positions. The prediction of motif-based method is low
because all MHC binders do not have binding motifs (5). The quantitative-
based methods consider the contribution of each residue at each position in
peptide instead of anchor positions/residues. Thus, matrix-based methods are
more sound than motif-based methods. The quantitative matrix (see Note 1)
methods, though reasonably good, fail in dealing with the nonlinearity in data,
which may result in missing of distantly related set of binders. In order to
handle nonlinearity in the data and to adapt self-training, machine learning
techniques such as artificial neural network (ANN) and support vector machine
(SVM) are used to predict MHC binders. In this chapter, we describe two web
servers nHLAPred and MHC2Pred for predicting MHC class I and MHC class
II binders, respectively.

2. Materials
2.1. nHLAPred

nHLAPred is a web server developed for predicting binders for 67 MHC
class I alleles. This server has two methods: ANNPred and ComPred. The
ANNPred allows the user to predict binders for 30 MHC class I alleles in an
antigen sequence. This is based on ANN and allows the user to predict binders
at different cutoff. The ComPred is a comprehensive method, which allows the
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user to predict binders in an antigen sequence for 67 MHC class I alleles. The
ComPred predicts binders for 30 MHC alleles using hybrid approach, which
is a combination of ANN and quantitative matrices. It predicts binders for the
remaining 37 MHC class I alleles using quantitative matrix (3) only.

nHLAPred is a user-friendly web server developed and launched on SUN
server 420R under Solaris environment. Stuttgart Neural Network Simulator,
SNNS 4.2 (6), was used to develop ANN-based method ANNPred in
nHLAPred server. The web server was launched using public domain software
package Apache. All web pages are written in hypertext markup language
(HTML), and CGI scripts are written in PERL and JavaScript. ReadSeq
(developed by Dr Don Gilbert) has been integrated in the server, which
allows the user to submit their sequence in any standard formats. The server
nHLAPred is accessible from http://www.imtech.res.in/raghava/nhlapred/ or
http://www.imtech.ac.in/raghava/nhlapred/. In addition, nHLAPred has been
mirrored at University of Arkansas for Medical Sciences, Little Rock, USA
on SGI origin server under IRIX environment (http://bioinformatics.uams.edu/
raghava/nhlapred/).

2.2. MHC2Pred

MHC2Pred is an SVM-based method for prediction of promiscuous MHC
class II binders. The method is developed for the prediction of binders for 42
MHC class II alleles. MHC class II binding peptides are 10–30 amino acids
long (7) with a binding core of nine amino acids containing primary anchor
residues (8). Therefore, in case of MHC2Pred prediction method, an additional
method for finding the nine amino acids binding core from ligands of variable
length is used. The data for training have been extracted from MHCBN (9) and
JenPep databases (10).

MHC2Pred is a user-friendly web server developed and launched on
SUN server 420R under Solaris environment. SVM was implemented using
the freely downloadable software SVM_light (11). The web servers were
launched using public domain software package Apache. All web pages are
written in HTML, and CGI scripts are written in PERL and JavaScript.
ReadSeq (developed by Dr Don Gilbert) has been integrated in the server,
which allows the user to submit their sequence in any standard format.
This server is accessible from http://www.imtech.res.in/raghava/mhc2pred/ or
http://www.imtech.ac.in/raghava/mhc2pred/. This server has also been mirrored
at University of Arkansas for Medical Sciences, Little Rock, USA on SGI
origin server under IRIX environment (http://bioinformatics.uams.edu/raghava/
mhc2pred/).
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3. Method
3.1. nHLAPred

Accessing the above web address leads to the home page of the server
nHLAPred. (Fig. 1). Certain menu options appear on the menu bar that are
further linked to relevant sections. These options are:

• Home: This link leads to the home page of the nHLAPred server.
• ComPred: One is directed to the submission form of method ComPred on clicking

the ComPred option.
• ANNPred: When a user clicks this option, he is directed to the submission form of

the method ANNPred.
• Reference: A click at this option leads to the list of all publication references

consulted in the development of the method.
• Help: This link would lead to a section of the server that provides complete infor-

mation about the method and stepwise guidance to use it in order to predict MHC
binders and CTL epitopes.

• Matrices: This option is linked to a table that contains list of all the matrices used
in the method.

• Algorithm: This link directs to the page containing description of the steps involved
in the development of the server one by one.

Fig. 1. Snapshot of home page of nHLApred web server.
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• Team: This option is linked to the page containing information about the people
involved in the development of the server.

• Contact: This option is linked to the page having the address and e-mail ID of
concerned person to be contacted in case of any query.

3.1.1. ANNPred

The prediction of MHC binders in ANNPred is solely based on ANN. The
major constraints of neural prediction are that it requires large amount of data
of MHC binders and nonbinders for prediction. Thus, it is available only for
30 MHC alleles (Table 1) for which sufficient MHC binder was available in
MHCBN (9).

Instructions to use ANNPred server for predictions
The submit button at the right bottom of the column ANNPred or the

ANNPred option in the menu bar must be clicked, on the appearance of the
home page (Fig. 1) of the server nHLAPred, if the user wants to use ANNPred
server. This action displays the sequence submission form of this method
(Fig. 2).

Submission Form

A sequence submission form is a web interface wherein users can paste their
query sequence, select among the choices provided, parameters of their choice,
and submit it to the server that returns the result of this query. The fields that
are required to be filled in the submission form are as follows:

• Sequence: The server accepts, as input, a protein or peptide sequence (at least
of nine amino acid residues) in single-letter amino acid code or in any of
the standard sequence format. The sequence can be pasted in the text box

Table 1
Major histocompatibility complex (MHC) class I alleles for which ANNpred
allows to predict binders

HLA-A1 HLA-A2 HLA-A*0201 HLA-A*0202 HLA-A*0203
HLA-A*0206 HLA-A2.1 HLA-A3 HLA-A*0301 HLA-A11
HLA-A*1101 HLA-A*2402 HLA-A31 HLA-A*6801 HLA-A*6802
HLA-B7 HLA-B*0702 HLA-B8 HLA-B14 HLA-B27
HLA-B*2705 HLA-B*3501 HLA-B*51 HLA-B*5101 HLA-B*5301
HLA-B*5401 H2-Db H2-Ld H2-Kb H2-Kd
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Fig. 2. Sequence submission form of ANNpred.

or local sequence files can be uploaded. All the nonstandard characters such
as [*&ˆ%$@#!()_+∼=;”’<>?.\�} are ignored from the sequence. A warning is
displayed in case input from both or none of the sources is detected.

• Format: The server accepts both the formatted and the unformatted raw sequences.
One has to choose whether the sequence uploaded or pasted is plain or formatted
before running prediction. The results of the prediction would be erroneous if the
chosen format is inappropriate.

• Allele selection: Single or many alleles may be selected. Multiple alleles can be
selected through Alt or Meta key, thus checking the promiscuity of the MHC binders
and T-cell epitopes. The error message is flashed in case no selection is made.

• Cutoff score: The user, from a list box provided in the form, can choose the value of
the cutoff score. Peptides having a score greater than the cutoff score are predicted
as MHC binders, otherwise as nonbinders.

• Threshold: Threshold from 1 to 10% can be selected in order to vary the stringency
level. A threshold of 1% predicts 1% of the best scoring natural peptides in a
protein sequence. The threshold correlates to the peptide score and therefore with
HLA–ligand interaction. More importantly, threshold is an indicator of the likelihood
that predicted peptide is capable of binding to a given HLA molecule. Lower the
threshold (equal to high stringency), lower is the false-positive rate and the higher
is the false-negative rate. In contrast, higher the threshold (equal to low stringency),
higher is the false-positive rate and lower is the false-negative rate. In short, from the
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same protein sequence input, a threshold setting of 1% will predict a lower number
of peptide sequences for a lower number of HLA-II alleles, compared with 2%
or higher thresholds; however, this will also ensure a higher likelihood of positive
downstream experimental results. Normally, at least for a first round of screening,
threshold values higher than 3% are not desirable, because the rate of false positives
can increase the size of the predicted repertoire to an amount unacceptable for later
experimental testing.

• Proteasome and immunoproteasome filters: In higher eukaryotes, the proteasome
complex performs the function of generating a pool of peptides for loading onto
MHC class I molecules (12). So, proteasomes have a critical role to play in
deciding which MHC binder acts as CTL epitope. The testing of peptides binding
to MHC is indispensable. But there still remains a possibility that these peptides
may not be generated in vivo by the proteasome. So, it is possible to narrow down
the number of CTL epitopes by including the proteasomal preferences in MHC
prediction. The user can vary the stringency of locating the proteasomal cleavage
site by varying the threshold. The higher the value of threshold, nonstringent will
be the prediction. The lower the value of threshold more stringent will be the
prediction.

• Output Format: Clicking the submit button in the submission form (see Note 2)
returns the result in user-friendly text formats. Each result display provides compre-
hensive information about the length of input sequence, nonamers generated,
threshold, and the number of selected alleles .

– HTML I: In this format, all the predicted binders (overlapping or nonoverlapping)
appear in separate lines. So, this form of display is much beneficial to locate the
overlapping binders as well as their exact position in the sequence (Fig. 3 ).

Fig. 3. Prediction of major histocompatibility complex (MHC) binders using
ComPred.
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Fig. 4. Mapping of binders of major histocompatibility complex (MHC) class I
alleles, useful in detecting promiscuous binding regions.

– HTML II: This format displays the binders of any allele in a single line just by
coloring the input sequence. First residue of each predicted binder is shown in
gray color and the rest of the residues in black (Fig. 4). This option is very useful
in locating the promiscuous MHC binders in the sequence.

– Tabular: In this format, predicted binders of each allele are displayed in separate
tables in the descending order of their score (Fig. 5). User can customize the
number of top scoring peptides to be displayed in each table.

3.1.2. ComPred

This is a comprehensive platform for prediction of MHC binders from an
antigenic sequence for 67 (Table 2) different MHC alleles. The prediction for
30 alleles is based on the hybrid approach of ANN and quantitative matrices.
The prediction for the rest 37 alleles is based on the quantitative matrices only.
The matrices for 17 MHC alleles out of these 37 alleles have been generated
in this study, and rest of the matrices are obtained from BIMAS server. The
predicted MHC binders are refined to potential T-cell epitopes by locating the
proteasomal cleavage sites.

Fig. 5. Major histocompatibility complex (MHC) binders in sorting order of binding
affinity.
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Table 2
Major histocompatibility complex (MHC) class I alleles for which ComPred
allows to predict binders

HLA-A1 HLA-A2 HLA-A*0201 HLA-A*0202 HLA-A*0203
HLA-A*0205 HLA-A*0206 HLA-A2.1 HLA-A3 HLA-A*0301
HLA-A11 HLA-A*1101 HLA-A20 HLA-A24 HLA-A*2402
HLA-A31 HLA-A*3101 HLA-A*3302 HLA-A68.1 HLA-A*6801
HLA-A*6802 HLA-B7 HLA-B*0702 HLA-B8 HLA-B14
HLA-B27 HLA-B*2702 HLA-B*2705 HLA-B*3501 HLA-B*3701
HLA-B*3801 HLA-B*3901 HLA-B*3902 HLA-B40 HLA-B*4403
HLA-B*51 HLA-B*5101 HLA-B*5102 HLA-B*5103 HLA-B*5201
HLA-B*5301 HLA-B*5401 HLA-B*5801 HLA-B60 HLA-B61
HLA-B62 HLA-Cw*0301 HLA-Cw*0401 HLA-Cw*0602 HLA-Cw*0702
H2-Db H2-Dd H2-Ld H2-Kb H2-Kd
H2-Kk HLA-G H2-Qa HLA-B*2706 HLA-B35
Mamu-A*01 HLA-A*0204 HLA-B*2703 HLA-B*2704 HLA-B*2902
HLA-A*3301 HLA-B44

Instructions for prediction using ComPred
On appearance of the home page of the server nHLAPred, the user should

click on Submit Sequence (left bottom) in ComPred column or “ComPred” in
menu bar, in order to use ComPred server (Fig. 1). The server will display
sequence submission form (Fig. 2).

• Sequence: The server accepts, as input, a protein or peptide sequence (at least of nine
amino acid residues) in single-letter amino acid code, in any of the standard formats.
The sequence can be pasted in the text box or local sequence files can be uploaded
either. All the nonstandard characters such as [*&ˆ%$@#!()_+∼=;”’<>?.\�} are
ignored from the sequence. A warning is displayed in case input from both or none
of the sources is detected.

• Format: The server accepts both the formatted and the unformatted raw sequences.
One has to choose whether the sequence uploaded or pasted is plain or formatted
before running prediction. The results of the prediction would be erroneous if the
chosen format is inappropriate.

• Allele selection: Single or many alleles may be selected. Multiple alleles can be
selected through Alt or Meta key, thus checking the promiscuity of the MHC binders
and T-cell epitopes. The error message is flashed in case no selection is made.

• Cutoff score: The user, from a list box provided in the form, can choose the value
of cutoff score. Peptides having a score greater than the cutoff score are predicted as
MHC binders, otherwise as nonbinders. In ComPred, the peptides predicted binders
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at a particular cutoff score are filtered by quantitative matrices at nonstringent
threshold, for example, at 10%, whereas the predicted nonbinders are filtered by
quantitative matrices in stringent conditions, for example, at 1% threshold. This
filtration results in reduction of false predictions.

• Other options: ComPred has number of other options such as, threshold, proteasome and
immunoproteasome filters, and output format, which are similar to nHLAPred options.

3.2. MHC2Pred

Accessing the above web address leads to the home page of the server
MHC2Pred (Fig. 6). Certain menu options appear on the menu bar that are
further linked to relevant sections. These options are:

• Home: This link directs to the home page of the server. The home page itself is
designed as the submission form of this server (Fig. 7).

• Help: Clicking at this option would lead to a section of the server that provides
complete information about the method and stepwise guidance to use it in order to
predict MHC class II binders.

• Information: One would be directed to the page containing description of the step-
by-step algorithm followed in the development of the server on clicking this option.

• Team: This link is connected to the page containing information about the people
involved in the development of the server.

Fig. 6. Snapshot of home page of MHC2Pred server.
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Fig. 7. Sequence submission form of MHC2Pred server.

• Contact: This option is linked to the page having the address and e-mail ID of
concerned person to be contacted in case of any query.

Instructions for using the server:

• Antigenic sequence: The query sequence (in single-letter amino acid codes) can be
given as input in any of the standard formats. Users can paste plain sequence in
the provided text box, or can upload the local sequence files, in single-letter amino
acid codes. All the nonstandard characters such as [*&ˆ%$@#!()_+∼=;”’<>?.\�}
are ignored from the sequence. The query sequence should be at least of nine amino
acid residues, otherwise a warning message will be flashed. The warning is also
displayed if the input from both or none of the sources is detected.

• Format of sequence: The server allows both the formatted and the unformatted
raw antigenic sequences to be given as input. The user should choose whether the
sequence uploaded or pasted is plain or formatted before running prediction. Choice
of inappropriate format will return incorrect prediction results.

• Selectionofallele:Theuser canvary thenumberof theallelesbefore runningprediction.
The server allows the selection of multiple alleles through Alt or Meta key. The
selectionof themultiplealleles iscrucial for thepredictionofpromiscuousMHCbinders
or T-cell epitopes. The error message is displayed in case no MHC allele is selected.

• Threshold: A threshold score between −1�5 and 1.5 can be selected in order to
discriminate the binders from nonbinders. The peptides possessing score greater than
the cutoff score are predicted as binders or else they are predicted as nonbinders.
In case no selection is made, a default threshold of prediction methods will be
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Fig. 8. Example output of MHC2Pred server.

considered. The default threshold is that at which the sensitivity and specificity of
prediction methods are nearly same.

• Submit: Clicking on the submit button in the submission form (see Note 2) sends
the request to the server and results in the appearance of the results page.

• Prediction results: The results of the prediction are displayed in user-friendly text
formats. Each of the result display format firstly provides a comprehensive account
of length of input sequence, prediction approach, nonamers generated, and threshold.

– HTML I: This format displays all overlapping predicted MHC binders in separate
lines. This is very useful in detecting the overlapping MHC binders. The display
provides a clear indication about the exact position of predicted binder. An
example is shown below (Fig. 8)

– HTML II: This format displays all predicted binders for specific MHC allele in
the single line just by coloring the predicted binders. The starting residue of each
predicted binder is shown in gray and rest of the residues in black color. The
option is very useful in detecting the promiscuous MHC binder in the sequence
(Fig. 9).

– Tabular: This one is the most common display format used by most prediction
methods. The peptides are displayed in table in descending order of their score.
The predicted binders of each MHC allele are shown in separate tables. The server
also provides the facility to customize the number of the top-scorer peptides to
be displayed in each table (Fig. 10).

Fig. 9. User-friendly output suitable for identifying promiscuous binders.
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Fig. 10. Predicted major histocompatibility complex (MHC) binders in sorting order
of affinity.

4. Conclusion
The above-discussed methods have large potential for further improvement

of prediction accuracy, especially in view of further extension or growth in
data of MHC binders and nonbinders and improvement in methods of binding
affinity determination. The methods will assist immunologists in identifying
potential vaccine candidates. The method will also find application in cellular
immunology, transplantation, vaccine design, immunodiagnostics, immunother-
apeutics, and molecular understanding of autoimmune susceptibility.
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Notes
1. The quantitative-based methods (Fig. 11) consider the contribution of each residue at

each position in peptide instead of anchor positions/residues. Score of each residue
in the sequence at its corresponding position in the matrix is added up to give the
final score of the peptide. Quantitative matrices provide a linear model with easy-
to-implement capabilities. Another advantage of using the matrix approach is that it
covers a wider range of peptides with binding potential, and it gives a quantitative
score to each peptide. Their predictive accuracies are considerable. The quantitative
matrices used for prediction are available.

2. To avoid misuse of the site, the services are available for the registered users only.
Users who are interested to use these servers are required to register themselves
at http://www.imtech.res.in/errors/noauth.html. They need to fill up a registration
form if they agree to the terms and conditions stated in the form. The user name
and password is then sent by e-mail.
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Fig. 11. Example quantitative matrix.
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Artificial Intelligence Methods for Predicting T-Cell
Epitopes

Yingdong Zhao, Myong-Hee Sung, and Richard Simon

Summary

Identifying epitopes that elicit a major histocompatibility complex (MHC)-restricted T-cell
response is critical for designing vaccines for infectious diseases and cancers. We have applied
two artificial intelligence approaches to build models for predicting T-cell epitopes. We developed
a support vector machine to predict T-cell epitopes for an MHC class I-restricted T-cell clone
(TCC) using synthesized peptide data. For predicting T-cell epitopes for an MHC class II-
restricted TCC, we built a shift model that integrated MHC-binding data and data from T-cell
proliferation assay against a combinatorial library of peptide mixtures

Key Words: T-cell receptors; MHC binding; epitope prediction; support vector machine;
artificial intelligence; combinatorial peptide library; vaccine design

1. Introduction
T-cell epitopes are the peptides that bind to the T-cell receptor (TCR)

in conjunction with a major histocompatibility complex (MHC) molecule to
activate T cells. Peptides degraded from foreign or self-proteins bind to MHC
molecules. The MHC–peptide complex can be recognized by TCRs and trigger
an immune response. Identifying characteristic patterns of immunogenic peptide
epitopes can provide fundamental information for understanding disease patho-
genesis and etiology and for the development of preventative and therapeutic
vaccines.

We have recently developed two computational approaches to improve the
accuracy in T-cell epitope prediction. Support vector machines (SVMs) are
particularly appealing for T-cell epitope prediction because of the ability of
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SVMs to build effective predictive models when the dimensionality of the data
is high and the number of observation is limited. SVMs are based on a strong
theoretical foundation for avoiding over-fitting training data, and they do not
have the problem of the numerous local minima that limit artificial neural
network models (1). We developed a SVM to predict T-cell epitopes with
an MHC class I-restricted T-cell clone (TCC) using the synthesized peptide
data (2).

For predicting T-cell epitopes with MHC class II restriction, we developed
a refined position-specific scoring matrix approach to permit shifts in the
binding groove. The model utilizes both quantified peptide–MHC binding infor-
mation and data from T-cell proliferation assay against a combinatorial peptide
library (3). This approach therefore makes use of information that captures all
the protein components of the tri-molecular interaction. In previous studies,
we analyzed data from positional scanning synthetic combinatorial libraries
(PS-SCL) (4) utilizing a biometrical approach to predict the spectrum of stimu-
latory ligands for individual TCCs (5). For TCCs with MHC class II restriction,
misalignment of the peptides by a single position in the open-ended binding
groove of class II MHC molecules would influence the way they are recognized
by the TCR. The library assay results needed to be interpreted with caution due
to the shifted alignments of the peptide mixtures. This phenomenon motivated
us to develop the current model.

2. Data
2.1. Required Data for SVM

A total of 203 synthetic peptides were tested against the LAU203-1.5 TCC
using a chromium release antigen recognition assay (6). LAU203-1.5 is an
A∗0201-restricted TCC from tumor-infiltrated lymph node cells of a melanoma
patient. A peptide with percentage-specific lysis higher than 10% is considered
positive.

2.2. Required Data for the Shift Model

2.2.1. Data from Screening Assays Using a Combinatorial
Peptide Library

A combinatorial peptide library is screened against a TCC of interest and
the appropriate MHC allele. The library of n-mers consists of 20×n complex
mixtures of peptides. Each mixture has n-mers with a specified amino acid in
a defined position. The other positions are randomized to contain 19 (cysteine
excluded) amino acids in equal proportion. For a 10-mer library, there are
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20 amino acids that can be at each of the 10 possible defined positions, and
hence, there are 200 combinatorial mixtures in all. The proliferation response
pattern of a TCC against a combinatorial peptide library provides a fingerprint
of the specificity of the TCC in peptide recognition.

Combinatorial peptide library assay data used to illustrate the shift model
here was the proliferation response of the TCC TL3A6. This clone recognizes a
peptide of the myelin basic protein (MBP) in complex with the HLA molecule
DRB5∗0101 (5). The data set is from 200 library mixtures with two replicate
count per minute (cpm) measurements per library mixture.

2.2.2. Peptide–MHC Binding Data

The peptide–MHC binding data for DRB5∗0101 are taken from the works
of Hammer et al. and Sturniolo et al. (7–9). The data were presented in a
position-specific format with a binding affinity for each amino acid at each
position of a peptide. The data represent the relative affinities of peptides with
single amino acid substitution from the reference peptide in terms of IC50.
Inhibitory concentration IC50 is the peptide concentration required to inhibit
50% of binding of the indicator peptide. Thus, its inverse is a measure of
binding affinity.

3. Methods
3.1. Support Vector Machine

3.1.1. Theory

SVM classification of a sample with a vector x of predictors is based on:

f�x� = sign

[∑
i

yi�ik �xi� x�+b

]
(1)

where the kernel function k measures the similarity of its two vector arguments.
For a linear SVM, the inner product kernel function is used. If f�x� is positive,
then the sample is predicted to be in class +1, otherwise class −1. The
summation is over the set of “support vectors” that define the boundary between
the classes. Support vector xi is associated with a class label yi that is either
+1 or −1. The ��i� and b coefficients are determined by “learning” the data.

An SVM attempts to minimize the generalization error for the independent
data rather than minimizing the mean square error for the training set; therefore,
it is an approximate implementation of the structural risk minimization
induction principle. For two-group classification, the SVM separates the classes
with a surface that maximizes the margin between them (1).
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3.1.2. Training and Test Data Sets Preparation

Due to the imbalance of two classes in the data set (36 stimulatory peptides
and 167 nonstimulatory peptides), we first divide the data into positive and
negative groups. Then in each group random sampling is used to select 80%
of the total peptides for training and 20% as a test set. Finally, the positive
and negative groups are combined separately in the training and test sets. This
procedure is repeated independently ten times.

3.1.3. Dimension Reduction

We encode each amino acid in a peptide by ten factors. These orthogonal
factors are obtained from 188 physical properties of 20 amino acids through
multivariate statistical analyses by Kidera et al. (10). They account for 86% of
the variance of the 188 physical properties. These factors include alpha-helix
or bend-structure preference, bulk, beta-structure preference, hydrophobicity,
normalized frequency of double bend, normalized frequency of alpha-region,
and pK-C. This encoding reduces the dimension of predictors by half while
enabling structural and biophysical properties to be better represented compared
to using amino acid indicator variables. Because our peptides are all 10 mers,
the total number of input variables is 100.

3.1.4. Model Training

The SVM training is performed using SVMlight (version 4.0) (11). There
are 100 input variables, which represent the 10 positions in the peptide. The
class values are set to 1 for positive peptides and −1 for negative peptides.
The threshold to predict positive or negative peptide is set to 0 by default
(see Note 1).

3.1.5. Cross-Validation

For each training set consisting of 80% of the observations, a fully specified
linear SVM is developed. This SVM model is then applied to the 20% test set.
Training and testing are repeated ten times for randomly determined training/test
set partitions. The final indices are averaged over the ten replicates (see Note 2).

3.1.6. Predictive Indices

Because identifying stimulatory (positive) peptides is of the greatest concern,
sensitivity and positive predictive value (PPV) are used to evaluate the models.
Sensitivity is the portion of all stimulating peptides that are correctly identified.
PPV is the probability that a peptide predicted to be positive actually does
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stimulate the TCC. Sensitivity indicates the ability of the classifier to detect real
epitopes, whereas PPV reflects the efficiency of the method. A classifier with
low PPV will result in the generation of numerous nonstimulatory peptides for
the next rounds of testing.

3.1.7. Comparison with other Artificial Intelligence Methods

In order to compare the performance with other prediction methods such
as artificial neural networks, relative operating characteristic (ROC) analysis
is also used (12). The area under the ROC curve is independent of the score
threshold used for distinguishing positive from negative predictions (see Note 3
and Fig. 1).

3.2. The Shift Model

In principle, screening data from a combinatorial peptide library assay can
be a basis of the prediction of novel epitopes specific for the given TCC.
In many applications involving MHC class II restriction, however, individual
library mixtures for the same amino acid fixed at consecutive positions give
indistinguishable T-cell responses. This artifact is thought to be the result of
peptides binding to the MHC groove in a “shifted” alignment as shown in
Fig. 2.

The main idea of the shift model is that a proliferation response is
the sum of the contribution from every possible peptide–MHC binding
configuration, rather than the result of the perfect alignment of the peptide
mixture with the binding groove. We assume that the average MHC-binding
preference of a mixture is dominated by its common amino acid in the fixed
position.

3.2.1. Obtaining the Affinity Matrix B0 from the Available
Peptide–MHC Binding Data

The binding score matrix is defined as the log ratio of binding affinity,
which is the reciprocal of IC50. The reference peptide has alanine (Ala) in all
scanned positions. Hence, the ratio represents the relative affinity of amino acid
i compared to Ala for a fixed MHC position j, and the log ratio of binding
affinity can be expressed as follows:

bij = − log
�IC50 of the substituted peptide : amino acid i in position j�

�IC50 of the reference peptide : Ala in position j�
(2)
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Fig. 1. Relative operating characteristic (ROC) curves for predictions on 203
peptides for melanoma T-cell clone (TCC) LAU203-1.5. Solid line represents averaged
predictions using support vector machine (SVM) applied on ten different test sets,
whereas dashed line represents averaged predictions using artificial neural network
(ANN) applied on ten different test sets.

3.2.2. Estimation of TCR Stimulation Score Matrix SMHC

for Peptide–MHC Complexes

The MHC-binding information for a given MHC allele can be expressed as
a 20×10 matrix B0

ij , where its �i� j�-th entry is the affinity of amino acid i for
MHC position j relative to other positions. We model the observed T-cell
response S

pep
ij to the mixture with amino acid i in peptide position j as the
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peptide A

MHC binding site

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

MHC binding site

peptide B

Fig. 2. Peptide–major histocompatibility complexs (MHCs) from the aligned binding
(left) and from the shifted binding (right). Because MHC class II molecules have open-
ended binding groove, a shifted binding configuration can happen according to the
affinity pattern of amino acids for each MHC position.

sum of responses SMHC
ik for all allowed MHC position k, each weighted by its

affinity B0
ik. More precisely, the model can be formulated as

S
pep
ij =

10∑
k=1

BijkS
MHC
ik +�ij (3)

where Bijk = B0
ik for �j −k� ≤ 4 (see Note 4) and 0 elsewhere.

Ridge regression is used to estimate the SMHC matrix in Equation 3 where
we control its scale parameter to stay within a comparable range as Spep. Ridge
regression minimizes � � �2 +t � SMHC �2, where t is the scale parameter.

3.2.3. Prediction of Novel T-Cell Epitopes

The prediction score for a 10-mer peptide is calculated from the score matrix
SMHC by adding the position-specific stimulatory value of each amino acid
residue (see Note 5). A computer program is executed to scan and score all
the overlapping 10 mers in a database such as GenPept or a customized set
of protein sequences. The 10-mer sequences with high scores are identified
as potential T-cell epitopes. These candidate peptides can be synthesized and
tested for T-cell stimulation.

3.2.4. Model Evaluation

To test the model, we use SMHC to score synthesized peptides for their
ability to stimulate TCC TL3A6 (5) and compare the predictions with the
experimentally measured responses. This prediction is then compared with the
prediction method made from a model without the shift effect. ROC analysis
is performed and area under the curve is calculated.
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Notes
1. During training an SVM, leave-one-out cross-validation is employed on the training

set to automatically optimize the relative misclassification costs for the two classes
and to optimize the tuning parameter that reflects the trade-off between the training
error and class separation.

2. To ensure that the peptides are sufficiently dissimilar for the cross-validation to be
valid, we exclude predictive indices from test sets containing a peptide with Pearson
correlation greater than 0.65 with a peptide in the corresponding training set.

3. The average cross-validated sensitivity and PPV of SVMs are 76.3 and 71.6%,
respectively, for the ten test sets. Artificial neural network models are optimized by
modifying the learning rate and momentum. The optimized models give an average
sensitivity of 55.0% and PPV of 81.7% on the ten test sets. Averaged ROC curves
for each method applied to the ten different test sets are generated as shown in
Fig. 1.

4. We impose a constraint that the minimum peptide–MHC contact is six positions.
5. The score matrix based on SMHC can be used to calculate TCR stimulation scores for

peptide–MHC complexes, rather than for (free) peptides. Therefore, it is necessary
to first identify the optimal peptide–MHC binding alignment for a given peptide.
For the peptide–MHC complex with the highest binding score, the corresponding
SMHC components are summed over the ten MHC positions, where an unoccupied
position is assigned the position-specific minimum value.
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Toward the Prediction of Class I and II Mouse Major
Histocompatibility Complex–Peptide-Binding Affinity
In Silico Bioinformatic Step-by-Step Guide Using Quantitative
Structure–Activity Relationships

Channa K. Hattotuwagama, Irini A. Doytchinova, and Darren R. Flower

Summary

Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern infor-
matics. Predictive computational models of peptide–major histocompatibility complex (MHC)-
binding affinity based on QSAR technology have now become important components of
modern computational immunovaccinology. Historically, such approaches have been built around
semiqualitative, classification methods, but these are now giving way to quantitative regression
methods. We review three methods—a 2D-QSAR additive-partial least squares (PLS) and a 3D-
QSAR comparative molecular similarity index analysis (CoMSIA) method—which can identify
the sequence dependence of peptide-binding specificity for various class I MHC alleles from the
reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent
(ISC) PLS-based additive method, which is a recently developed extension to the additive method
for the affinity prediction of class II peptides. The QSAR methods presented here have established
themselves as immunoinformatic techniques complementary to existing methodology, useful in
the quantitative prediction of binding affinity: current methods for the in silico identification of
T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the
accurate computational prediction of peptide–MHC affinity.

We have reviewed various human and mouse class I and class II allele models. Studied
alleles comprise HLA-A∗0101, HLA-A∗0201, HLA-A∗0202, HLA-A∗0203, HLA-A∗0206,
HLA-A∗0301, HLA-A∗1101, HLA-A∗3101, HLA-A∗6801, HLA-A∗6802, HLA-B∗3501, H2-Kk,
H2-Kb, H2-Db HLA-DRB1∗0101, HLA-DRB1∗0401, HLA-DRB1∗0701, I-Ab, I-Ad, I-Ak, I-As,
I-Ed, and I-Ek.

In this chapter we show a step-by-step guide into predicting the reliability and the resulting
models to represent an advance on existing methods. The peptides used in this study are available
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from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available
commercially in the SYBYL molecular modeling software package. The resulting models, which
can be used for accurate T-cell epitope prediction, will be made are freely available online at
the URL http://www.jenner.ac.uk/MHCPred.

Key Words: Major histocompatibility complex; peptides/epitopes; QSAR; additive method;
CoMSIA

1. Introduction
Quantitative structure-activity relationship (QSAR) analysis, as a predictive

tool of wide applicability, is one of the main cornerstones of modern chemin-
formatics and, increasingly, bioinformatics. QSARs are used to identify the
structural and physical properties underlying the biological activity of a series
of peptides. Immunoinformatics, a newly emergent subdiscipline of bioinfor-
matics, which addresses informatic problems within immunology, uses QSAR
technology to tackle the crucial issue of epitope prediction. As high-throughput
biology reveals the genomic sequences of pathogenic bacteria, viruses, and
parasites, such predictions will become increasingly important in the post-
genomic discovery of novel vaccines, reagents, and diagnostics. In order to
better understand the sequence dependence of peptide–major histocompatibility
complex (MHC) binding of the mouse MHC, we have now used our approach
to explore the amino acid preferences of various human and mouse alleles.

We have recently developed an immunoinformatic technique for the
prediction of peptide–MHC affinities, known as the additive method, a 2D-
QSAR technique which is based on the Free-Wilson principle (1), whereby
the presence or absence of groups is correlated with biological activity. For a
peptide, the binding affinity is thus represented as the sum of amino acid contri-
butions at each position. We have extended the classical Free-Wilson model
with terms that account for interactions between side chains of amino acids. An
iterative self-consistent (ISC) partial least squares (PLS)-based extension (2)
of the additive method (3,4) has also been developed for prediction of class II
peptide-binding affinity and applied to human class II alleles. We now address
binding to class II human and mouse alleles for peptides of up to 25 amino acids
in length. The ISC additive method assumes that the binding affinity of a large
peptide is principally derived from the interaction, with an MHC molecule, of
a continuous subsequence of amino acids within it. The ISC is able to factor
out the contribution of individual amino acids within the subsequence, which is
initially identified in an iterative manner. Using literature data, we have applied
the additive method to peptides binding to several human class I (3–5) and
class II alleles (2).
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Three-dimensional QSARs are a technique of significant value in identi-
fying correlations between ligand structures and binding affinity. This value
is often enhanced greatly when analyzed in the context of high-resolution
ligand-receptor structures. In such cases, enthalpic changes—van der Waals and
electrostatic interactions—and entropic changes—conformational and solvent
mediated interactions—in ligand binding can be compared with structural
changes in both ligand and macromolecule, providing insight into the binding
mechanism (6,7). Although there are many molecular descriptors that account
for free-energy changes, 3D-QSAR techniques, which use multivariate statistics
to relate molecular descriptors in the space around ligands to binding affinities,
have become preeminent because of their robustness and interpretability (8).
In the case of comparative molecular similarity index analysis (CoMSIA), a
Gaussian-type functional form is used so that no arbitrary definition of cut-off
threshold is required, and interactions can be calculated at all grid points. The
obtained values are evaluated using PLS analysis (9). CoMSIA allows each
physicochemical descriptor to be visualized in 3D using a map that denotes
binding positions that are either “favored” or “disfavored.”

Recently, CoMSIA has been used to produce predictive models for peptide
binding to human MHCs: HLA-A∗0201 (10) and the HLA-A2 and HLA-A3
supertypes (11,12). We show how CoMSIA has been applied to certain class
I MHC alleles. These models were used to both evaluate physicochemical
requirements for binding and explore and define preferred amino acids within
each pocket. The explanatory power of such a 3D-QSAR method is consid-
erable, not only in its direct prediction accuracy but also in its ability to
map advantageous and disadvantageous interaction potentials onto the struc-
tures of the peptides being studied. The data are highly complementary to the
detailed information obtained from crystal structures of individual peptide–
MHC complexes.

2. Method Theory
2.1. Additive Method—Class I and Class II Alleles

A program was developed and implemented into the QSAR module of
SYBYL to transform the nine amino acid peptide sequences into a matrix of
1 and 0. A term is equal to 1 when a certain amino acid at a certain position
or a certain interaction between two side chains exists and 0 when they are
absent. For example, 180 columns account for the amino acids contributions
(20aa × 9 positions); 3,200 columns account for the adjacent side chains or
1–2 interactions (20 × 20 × 8); and 2,800 columns account for every second
side chain or 1–3 interactions (20×20×7). As these two models were roughly
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equivalent in terms of statistical quality, we applied the principle of Occam’s
razor and sought the simplest explanation, choosing the amino acids only model,
which will be discussed in this study.

The matrix was assessed using PLS (13), an extension of multiple linear
regression (MLR). The method works by producing an equation or QSAR,
which relates one or more dependent variables to the values of descriptors
and uses them as predictors of the dependent variables (or biological activity)
(13). The IC50 values (the dependent variable y� were represented as negative
logarithms (pIC50). The predictive ability of the model was validated using
“Leave-One-Out” Cross-Validation (LOO-CV) method.

2.1.1. Cross-validation Using the “LOO-CV” Method

Cross-validation (CV) is a reliable technique for testing the predictivity of
models. With QSAR analysis in general and PLS methods in particular, CV is a
standard approach to validation. CV works by dividing the data set into a set of
groups, developing several parallel models from the reduced data with one or
more of the groups excluded, and then predicting the activities of the excluded
peptides. When the number of excluded groups is the same as the number in
the set, the technique is called LOO-CV. The predictive power of the model
is assessed using the following parameters: cross-validated coefficient (q2) and
the standard error of prediction (SEP), which are defined in Equations 1 and 2.

q2 = 1�0−
∑
i=1

(
pIC50�exp� −pIC50�pred�

)2

∑
i=1

(
pIC50�exp� −pIC50�mean�

)2 or simplified to q2 = 1�0− PRESS
SSQ

(1)

where pIC50�pred� is a predicted value and pIC50�exp� is an actual or experi-
mental value. The summations are over the same set of pIC50 values. PRESS is
the predictive error sum of squares, and SSQ is the sum of squares of pIC50�exp�

corrected for the mean.

SEP =
√

PRESS
p−1

(2)

where p is the number of the peptides omitted from the data set. The optimal
number of components (NC) resulting from the LOO-CV is then used in the
noncross-validated model which was assessed using standard MLR validation
terms, explained by variance r2 and standard error of estimate (SEE) which are
defined in Equations 3 and 4.



Prediction of Class I and II Mouse MHC–Peptide-Binding Affinity 231

r2 = 1�0−
n∑

i=1

(
pIC50�exp� −pIC50�calc�

)
n∑

i=1

(
pIC50�exp� −pIC50�mean�

) = 1− ESS
SSQ

(3)

SEE =
√

ESS
n− c−1

(4)

where pIC50�calc� is the pIC50 value calculated by the non cross-validated model
and ESS is the estimated error sum of square where n is the number of
peptides and c is the number of components (NCs). In the present case, a
component in PLS is an independent trend relating measured biological activity
to the underlying pattern of amino acids within a set of peptide sequences.
Increasing the NCs improves the fit between target and explanatory properties;
the optimal NCs corresponds to the best q2. Both SEP and SEE are standard
errors of prediction and estimate the distribution of errors between observed
and predicted calculated values in the regression models.

2.2. ISC Algorithm—Class II Alleles

An ISC PLS-based additive method was applied to the set of class II alleles.
The ISC PLS-based algorithm (2) works by generating a set of nonameric
subsequences extracted from the parent peptide. Values for pIC50 corresponding
to this set of peptides were predicted using PLS and compared to the exper-
imental pIC50 value for each parent peptide. The best predicted nonamer was
selected for each peptide, that is, those with the lowest residual between the
experimental and predicted pIC50. LOO-CV was then employed to extract the
optimal NCs, which was then used to generate the noncross-validated model.
Each new model is built from the chosen set of optimally scored nonamers.
The method works by comparing the new set of peptide sequences with the
old set, and if the new set is different, the next iteration is begun. The process
is repeated until the set of extracted nonameric peptide sequences identified by
the procedure have converged. The resulting coefficients of the final noncross-
validated model describe the quantitative contributions of each amino acid at
each of the nine positions.

2.3. CoMSIA

2.3.1. Molecular Modeling

Wherever possible, an X-ray crystallographic structure for the
nonameric/octameric peptide binding to the various class I alleles was chosen



232 Hattotuwagama, Doytchinova, and Flower

as a starting conformation. Using the crystallographic peptide as a template,
all the studied peptides were built and then subjected to an initial geometry
optimization using the Tripos molecular force field and charges derived
using the MOPAC AM1 Hamiltonian semiempirical method (14). Molecular
alignment was based on the backbone atoms of the peptides, which was defined
as an aggregate during optimization.

2.3.2. CoMSIA Method

Five physicochemical descriptors (steric, electrostatic, hydrophobic, and
hydrogen-bond donor and hydrogen-bond acceptor) were evaluated using a
probe atom placed within a 3D grid. The atom had a radius of 1 Å and charge,
hydrophobic interaction, and hydrogen-bond donor and acceptor properties all
equal to +1. The grid was extended beyond the molecular dimensions by 4.0 Å
in the X, Y , and Z directions. The spacing between probe points within the
grid was set at 2.0 Å and was increased in steps of 0.5 Å. CoMSIA analysis
for each allele was carried out using PLS (15), and models were then validated
through the LOO-CV method, as previously described.

2.3.3. CoMSIA Maps

The results of the noncross-validated CoMSIA models were displayed as
contour maps, with each physicochemical descriptor highlighted in different
colors, reflecting favorable or disfavorable changes in the peptide structure and
its influence on MHC binding. These maps were created using the standard
deviation coefficient option based on actual values. The CoMSIA steric bulk
map is shown using green (more bulk is favored) and yellow (less bulk is disfa-
vored) contours. The electrostatic potential map is shown with blue (negative
potential is disfavored) and red (negative potential is favored) contours. CoMSIA
hydrophobic interaction fields are colored yellow (where hydrophobic interaction
enhances affinity) and white (where hydrophilic interactions enhance affinity).
The hydrogen-bond donor map is shown using cyan (donors on the ligand are
preferred) and purple (donors are disfavored) contours. Finally, in the hydrogen-
bond acceptor map, favored areas are shown in magenta and disfavored in yellow.

3. Methodology
3.1. Peptide Database

The information and data based on the peptide sequences and their binding
affinities were obtained from the AntiJen database, a development of JenPep
(16,17) (URL: http://www.jenner.ac.uk/AntiJen). These include human class
I (HLA-A∗0101, HLA-A∗0201, HLA-A∗0202, HLA-A∗0203, HLA-A∗0206,
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HLA-A∗0301, HLA-A∗1101, HLA-A∗3101, HLA-A∗6801, HLA-A∗6802, and
HLA-B∗3501), mouse class I (H2-Kk, H2-Kb, and H2-Db), human class II
(HLA-DRB1∗0101, HLA-DRB1∗0401, and HLA-DRB1∗0701), and mouse
class II (I-Ab, I-Ad, I-Ak, I-As, I-Ed, and I-Ek). Compilations of quantitative
affinity measures for peptides binding to class I and class II MHCs were
carried out with known binding affinities (IC50). The binding affinities were
originally assessed by a competition assay based on the inhibition of binding
of the radiolabeled standard peptide to detergent-solubilized MHC molecule
(18,19). Predicted pIC50 can be related to changes in the free energy of binding:
�Go

bind = –RT ln IC50. The values were predicted from a combination of the
contributions (p) of individual amino acids at each position of the peptide.

Several QSAR methodologies have been applied to both the class I and class
II alleles, and their procedures are described as follows. For the purposes of
this study, we shall focus on results from the mouse class I H2-Db and mouse
class II I-Ab allele.

3.2. Computer Software

All QSAR and molecular modeling calculations were carried out on a Silicon
Graphics octane workstation using the SYBYL 6.9 molecular modeling package
(20) and Microsoft Excel 2000.

3.3. Additive Method—Class I and Class II Alleles

This section is a step-by-step guide to the additive PLS method used in this
study. Please note that some modules discussed in the following sections are
explicit for our methods.

3.3.1. Build Initial Additive Model

1. Extract peptides and their IC50 values from AntiJen database and import into Excel.
2. Extracted IC50 values were first converted to log�1/IC50] values (or –log10�IC50� or

pIC50) to be used as the dependent variables in a QSAR regression.
3. Convert the list of peptides and pIC50 values from “.xls” file into a “.txt” file and

import into SGI workstation.
4. Open SYBYL (version 6.9).
5. The first step is to convert the ‘.txt’ file into a ‘.csv’ file via the implemented script

written for the additive method (see Section 2.1):

a. Select ‘Jenner’ followed by ‘Class I Additive CSV’ from the tool bar
b. Enter ‘name of file containing peptides and IC50’: original excel ‘.txt’ file

containing list of peptides
‘length of peptides’ = 9 (in this case)
‘name of CSV file’ = ‘.csv’
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c. Select ‘File’ followed by ‘Molecular Spreadsheet’
d. Then in the following order select: ‘open’ – ‘format’ – ‘ASCII file’ – ‘.csv’ –

‘open’ – ‘merge’ – ‘OK’ (Fig. 1).
e. You are now ready to move on to the QSAR module for the PLS part of the

calculation.

3.3.2. PLS Calculation

1. Select ‘QSAR’ from the toolbar followed by ‘PLS’ option.
2. From the PLS module, the following options were selected in order to perform the

cross-validation method:

a. ‘Leave-1-Out’
b. ‘Dependent Columns’ = IC50

c. ‘Components’ = 6 = 6
d. ‘Scaling’ = none
e. ‘Column Filtering’ = no
f. ‘Use SAMPLS’ = no
g. DO PLS

3. After calculation, save PLS analysis (.pls).
4. Re-select ‘QSAR’ followed by ‘Report QSAR’ and save file name (.lis).
5. Go to ‘File’ and read in the new ‘.lis’ file.
6. Open the ‘.lis’ file, find the residual values list, and identify the peptide that has

a residual value of ±2.000 and remove it from the molecular spreadsheet (.csv).
Re-save the table under a new filename.

Fig. 1. Additive table.
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7. Repeat PLS method again, following steps 1–7.
8. The cross-validation method stops until at a cut-off point where the residual value

is < 2�000 and/or q2 > 0�4.

The optimal NCs leading to the highest q2
�LOO� and the lowest SEP were used

to derive the noncross-validated model, by carrying out the following steps.

9. Select ‘QSAR’ from the toolbar, followed by ‘PLS’ option.
10. From the PLS module the following options were selected:

a. ‘No Validation’
b. ‘Dependent Columns’ = IC50

c. ‘Components’ = optimal number from cross-validation result
d. ‘Scaling’ = none
e. ‘Column Filtering’ = no
f. ‘Use SAMPLS’ = no
g. DO PLS

11. After calculation, save PLS analysis (.pls).
12. Re-select ‘QSAR’ followed by ‘Report QSAR’ and save new output file name

(.lis).
13. The final step involves the analysis of the noncross-validation ‘.lis’ file. This is

done by exporting the file into excel and looking at the regression equation in
order to examine the positive and negative binding interactions of amino acids at
each of the 9 positions (Fig. 2).

3.4. ISC Algorithm—class II Alleles

In order to carry out the ISC method on class II alleles, each peptide of
varying lengths 10–25 must be broken down into peptide lengths of 9. This is
done by taking fragments of nonamers from positions 1–9, 2–10, 3–11, 4–12
… 17–25 (assuming that 25 is the longest peptide). This can be carried out in
excel or by writing a Perl script. Each nonamer gets the parent IC50 value.

Once you have your list of class II nonamers and their respective pIC50

values, follow the same procedure as described in Sections 3.3.1 and 3.3.2.
Once the PLS calculation has been carried out and the noncross-validation (.lis)
file is saved, this must be edited using ‘nedit’, ‘vi,’ or ‘jot’ commands in the
SGI window. Within the file the following must be carried out:

1. Keep only the IC50 regression equation.
2. Make a note of the ‘constant’ value.
3. Add five spaces down (return key) at the end of the file.
4. Save as a .txt file.
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Fig. 2. Relative contributions of position-wise amino acids at each binding positions
1–9 for the H2-Db allele. The contribution made by different individual amino acids
at each position of the 9-mer binding peptide. The contribution is equivalent to a
position-wise amino acid regression coefficient obtained by partial least squares (PLS)
regression (as described in the text).

The ISC algorithm is an in-house development implemented within SYBYL
6.9; the following steps demonstrate that have been taken for class II prediction.

1. Select ‘Jenner’ from the toolbar menu.
2. Select ‘Peptide to Fasta’ from the drop-down menu:

a. ‘file of peptide sequences’ = the original exported ‘.txt’ file containing list of
peptides

b. ‘fasta file’ = fasta_file

3. Go back to ‘Jenner’ and select ‘Class I Additive Regression’:

a. ‘name of text file containing regression equation’ = enter the edited ‘.txt’ non-
cross validated file

b. ‘name of additive model output file’ = ‘.out’

4. Open and edit the newly created ‘.out’ file and edit the following (Fig. 3):

a. Add the noted ‘constant’ value.
b. Change any values of –1.000 to 0.000 (this indicates where any amino acids are

absent).
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P1 P2 P3 P4 P5 P6 P7 P8 P9
A –0.016 –0.008 0.265 –0.115 0.066 –0.442 0.050 0.447 –0.034
C 0.000 0.083 0.037 –0.051 0.090 0.050 0.216 0.079 –0.139
D –0.065 0.000 –0.067 0.000 0.000 0.107 –0.077 –0.041 –0.203
E –0.028 –0.129 0.000 0.000 0.000 0.000 0.000 –0.048 0.000
F 0.000 0.000 0.000 –0.283 0.000 0.000 0.000 0.000 0.000
G –0.286 –0.039 0.050 –0.011 0.000 0.000 –0.003 0.000 –0.067
H –0.003 –0.013 0.000 0.000 0.000 0.000 0.000 0.213 0.000
I –0.043 0.090 –0.364 –0.090 0.000 –0.244 –0.351 0.000 –0.069
K 0.094 0.000 0.000 0.000 –0.069 0.000 0.000 0.000 0.000
L 0.000 –0.215 –0.110 0.094 –0.162 0.000 –0.003 –0.242 0.066
M 0.008 –0.067 0.000 0.258 0.223 0.154 0.017 –0.027 0.082
N 0.000 0.298 0.000 0.042 –0.003 –0.069 0.064 –0.097 -–0.455
P 0.100 0.000 0.032 0.090 0.030 0.201 0.080 0.000 0.280
Q –0.013 0.000 –0.235 0.000 0.000 0.000 0.000 –0.067 –0.051
R 0.164 –0.286 0.066 0.122 –0.233 0.120 0.213 –0.229 0.216
S –0.051 0.090 0.161 0.036 –0.078 0.041 –0.125 0.000 0.213
T 0.054 0.151 0.079 –0.060 0.233 0.000 –0.079 0.012 0.161
V –0.069 –0.048 0.000 0.064 0.000 0.000 0.000 0.000 0.000
W 0.000 0.000 –0.029 0.000 –0.097 –0.003 0.000 0.000 0.000
Y 0.155 0.092 0.116 –0.097 0.000 0.085 0.000 0.000 0.000

Fig. 3. Additive model for the binding affinity prediction to the I-Ab allele. *constant
= 6.044 (The constant accounts, at least nominally, for the peptide backbone contri-
bution). ∗∗0.000 represents position where amino acids are absent within matrix.

c. Re-save as a ‘.txt’ file.

5. Go back to ‘Jenner’ and select ‘Run Class II Additive Method’ and enter the
following details:

a. ‘name of fasta file containing sequences to be predicted’ = fasta_file
b. ‘name of the additive model data file’ = edited ‘.out’ file
c. ‘minimum pIC50 to be output’ = -
d. ‘name of output file’ = ‘.out’-
e. ‘name of output file’ = ‘.out’
f. ‘name of output file of best nonamers’ = ‘.txt’

6. Take the final output ‘.txt’ file and repeat the whole process again following the
steps described in Sections 3.3.1, 3.3.2, and 3.4.

7. The procedure is repeated until the peptides in the final output file have converged.

3.5. CoMSIA—Class I Alleles

The following section describes the steps needed to build a CoMSIA model.
If no X-ray data are available for the particular peptide molecule complex
you are studying, then the closest crystallographic structure for the peptide
binding to that particular allele should be downloaded and used as the starting
conformation. This can be done by searching the Protein Data Bank (PDB)
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(http://www.rcsb.org/pdb/). For example, the X-ray structure of the nonameric
peptide FAPGVFPYM50 bound to the H2-Db allele was used for this study.

3.5.1. Steps for Building a CoMSIA Model

Once an X-ray structure has been searched and saved, the initial procedure
for collecting and preparing the data is the same as in Section 3.3.1, see steps
1–5. The following are the necessary steps for building the CoMSIA model:

1. Open SYBYL.
2. From the main toolbar, go to ‘Read’ and open the downloaded ‘.pdb’ file.
3. A pop-up request will ask you to ‘center the molecule’ – answer ‘yes.’
4. Select ‘Build/Edit’ from the main toolbar, followed by:

a. ‘delete’
b. ‘substructure’
c. Select the 9 nonamers from the bottom of the list
d. Select ‘OK’ then ‘invert’ and finally ‘OK’ again.

The next step is to add hydrogens to the ‘.pdb’ peptide backbone:

5. Select ‘Biopolymer’ from the main toolbar menu, followed by:

a. ‘add hydrogens’
b. ‘all’
c. ‘OK’ – the pop-up request will ask you to select ‘essential’ or ‘all’ – select ‘all’
d. Save as a new ‘.pdb’ file.

The final step in the initial steps of building a CoMSIA model is intro-
ducing all the peptide sequences you wish to study by following this simple
procedure:

6. Select ‘Jenner’ from the main menu.
7. Then select ‘Build CoMSIA’ and enter the following details:

a. ‘file of peptide sequences’ = enter the original ‘.txt’ file list of peptides.
b. ‘OK’

3.5.2. Steps for Aligning CoMSIA Model

The following section describes the procedure to align the desired peptides
from the database to the backbone of the X-ray structure peptide:

1. Select ‘File’ from the main toolbar, followed by:

a. ‘database’
b. ‘open’ – ‘.mdb’ file (the newly created database file from Section 3.5.1—step 7).
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c. ‘open’ – ‘update’
d. ‘OK’

2. Select ‘File’ from the main toolbar again, followed by:

a. ‘database’
b ‘get molecule’ and highlight the first peptide sequence in the list.
c. ‘OK’

3. Delete hydrogens and side chains, keeping only the backbone chain (Fig. 4):

a. Save as new ‘.mol’ file to use as template.

4. Finally, to align the peptides go to ‘File’:

a. ‘align database’ – and enter the following details:
‘database to align’ = ‘.mdb’ file
‘template molecule’ = ‘.mol’ file

b. ‘GO’ (Fig. 5)

You should now see all the peptides in the database aligning with the backbone
of the X-ray structure.

3.5.3. Steps for Creating the CoMSIA Grid

Once the CoMSIA model is created, the next part of the method is to
calculate the descriptors to be used as interaction points between probe points
within a 3D grid and the atoms on the aligned peptides. This is carried out as
follows:

1. Select ‘File’ from the main toolbar, followed by ‘Molecular Spreadsheet.’
2. From the ‘molecular spreadsheet,’ select ‘new’ – ‘database’ and open the ‘.mdb’

file.
3. At this stage you must manually input the pIC50 values into ‘column 1.’

The next step is to calculate the five descriptors (steric, electrostatic,
hydrophobic, and hydrogen-bond donor and hydrogen-bond acceptor) found

Fig. 4. Backbone chain of the X-ray structure peptide.
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Fig. 5. Superimposed alignment of peptide molecules for the H2-Db alleles.

within the QSAR module of SYBYL and to create and add a 3D grid around
the aligned peptides. This is carried out as follows:

4. Highlight ‘column 2’

a. Select ‘autofill’
b. Followed by ‘CoMSIA’ from the list and ‘open’
c. Select a field type (a descriptor)
d. Keep the ‘attenuation factor’ as the default setting of 0.3
e. Finally, select ‘use existing region’ and ‘define’

When the 3D grid appears, extend in the X, Y , and Z directions so that
it encompasses the peptides but allow for an extra 4 Å in each direction
(Fig. 6).

5. After creating the grid save as ‘.rgn’ file
6. Highlight the next column on the molecular spreadsheet and repeat steps 4 and 5.

The final step in the CoMSIA method is the PLS calculation in order to reach a
model using the calculated descriptors and the effect on the peptide interactions
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Fig. 6. Superimposed H2-Db peptide molecules placed within 3D grid lattice.

within the grid. This procedure is carried out in the same way as described in
Section 3.3.2. The only significant difference on the PLS menu is:

a. ‘scaling’ = CoMFA Standard
b. ‘column filtering’ = 1.0

3.5.4. Analyzing the CoMSIA Model

Once the PLS calculation has been carried out and a statistical model is
achieved, we can now examine the CoMSIA maps to see where the inter-
actions lie between each descriptor and the peptides. This is carried out as
follows:

1. Select ‘File’ from the main toolbar.
2. Select ‘Read’ and open the ‘.mol’ file.
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3. Go back to ‘File.’ select ‘Align Database’ and enter the following details:

a. ‘database to align’ = ‘.mdb’ file
b. ‘template molecule’ = pick the first peptide from list

4. Select ‘GO’ – —a pop-up caution message appears, just click ‘OK.’
5. Select ‘file’ from the toolbar and open the final ‘non-cross validation model’ (.csv)

file from the molecular spreadsheet.
6. From the molecular spreadsheet, select ‘QSAR,’ followed by ‘PLS’ and open the

‘non-cross validation model’ (.lis) file.
7. Go back to ‘QSAR’:

a. select ‘view QSAR’
b. followed by ‘CoMSIA’

8. A pop-up message now appears asking ‘do you wish to remove it?’ – answer ‘NO.’

The CoMSIA map module now appears. From this module, select “contri-
bution (%)” and unselect the “examine predicted.” It is now possible to examine
the CoMSIA maps with respect to the interactions of descriptors and peptides
(Fig. 7A–E).

3.6. Designing New Predicted Class I epitopes

The main aim of using QSARs in this type of model building is using the
results to design new peptides and/or superbinders. By looking at the relative
positive contributions of amino acids at positions 1–9 (Fig. 2), it is possible to
take the best contributing amino acids at each position and create a list of all

(A) (B) (C)

(D) (E)

Fig. 7. H2-Db steric (A), electrostatic (B), hydrophobic (C), hydrogen-bond acceptor
(D), and hydrogen-bond donor (E) potential maps.



Prediction of Class I and II Mouse MHC–Peptide-Binding Affinity 243

possible sequences. A further “in-house” method has been written, developed,
and implemented with SYBYL to create these new binders. The following are
the necessary steps for designing new peptides:

1. Import the file containing the new predicted list of peptides (.txt) to the SGI
workstation.

2. Open SYBYL
3. Select ‘Jenner’ from the main toolbar followed by ‘Create Peptide List Combina-

torially’ and enter the following details:

a. ‘File with position dependent residue preference’ = ‘.txt’
b. ‘Name of output peptide file’ = ‘.dat’

4. Go back to ‘Jenner’ and select ‘Peptide to Fasta’ and enter the following details:

a. ‘File of peptide sequences’ = prediction.dat
b. ‘fasta_file’ = fasta_file

5. Open and edit the final noncross-validation model file ‘.lis’ from the
ADDITIVE/PLS method and carry out the following steps:

a. keep IC50 equation only and add five spaces below the regression equation.
b. make a note of the constant value (e.g., 5.519).
c. re-save ‘.txt’ file.

6. Go back to ‘Jenner’ and select ‘Class I Additive Regression’ and enter the following
details:

a. ‘Name of text file containing regression equation’ = original predicted ‘.txt’ file
b. ‘Name of additive model out out file’ = .out (change .data to .out)

7. Now open and edit the new ‘.out’ file and carry out the following steps:

a. add the noted constant value (e.g., 5.519)
b. if ‘-1.000’ occurs in the matrix, it means that an amino acid is absent at that

position—so change to 0.000.
c. re-save ‘.out’ file

8. Go back to ‘Jenner’ and select ‘Class I Additive Method’ and enter the following
details:

a. ‘Name of fasta file containing sequences to be predicted’ = fasta_file
b. ‘Name of additive model data file’ = ‘.out’
c. ‘Minimum IC50to be output’ = -
d. ‘Name of output file’ = new ‘.out’ file

When the prediction calculation has finished, export the new predicted
‘.out’ file to excel and examine the newly predicted binding affinities of the
peptides.
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Predicting the MHC–Peptide Affinity
Using Some Interactive-Type Molecular Descriptors
and QSAR Models

Thy-Hou Lin

Summary

The ligand–receptor interaction between some peptidomimetic inhibitors and a class II major
histocompatibility complex (MHC)–peptide presenting molecule, the HLA-DR4 receptor, can be
modeled using some 3D quantitative structure-activity relationship (QSAR) methods such as the
comparative molecular field analysis (CoMFA) and some molecular descriptors using the Cerius2
program. The structures of these peptidomimetic inhibitors can be generated theoretically, and
the conformations used in the 3D QSAR studies can be defined by aligning them against the
known structure of HLA-DR4 receptor through a least-square fitting procedure. The best CoMFA
models can be constructed using the aligned structures of the best fitting result. The principal
components analysis (PCA) module of the Cerius2 program can be used to trim outliers of the
CoMFA columns generated. Procedures for a direct QSAR analysis using the Cerius2 descriptors
and regression analysis by the genetic function module are also presented

Key Words: 3D QSAR; PLS; PCA; CoMFA; structure alignment

1. Introduction
The major histocompatibility complex (MHC) class II molecules are cell-

surface proteins that perform an essential function in immunological detection
using T-helper cells. They are encoded by the genes HLA-DR, HLA-DQ, and
HLA-DP. Each MHC molecule consists of an �-chain and �-chain. In the case
of the DR molecule, the two chains are encoded by the genes HLA-DRA and
HLA-DRB1, and only DRB1 is polymorph, that is, only the gene has a number
of different alleles existing in the population (1). In addition, each individual
possesses two DRB1 alleles, one from each parent.
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The serological typification of the DR alleles leads to the differentiation
between ten different classes, HLA-DR1-DR10 (2). Molecular genetic typifi-
cation shows that these classes can be further split, for example, DR2 has been
divided into DR15 and DR16 (3). Within these classes it is possible to distin-
guish between a number of subtypes. Up until now, 33 subtypes of DR4 have
been described and are termed HLA-DRB1∗0401-∗0433 (3–5). Rheumatoid
arthritis (RA) or chronic polyarthritis is an intermittent systemic autoimmune
disease that occurs in ∼1% of the population (6–9). The etiology of the disease
is unknown. It has been shown that there is a genetic disposition for RA
caused by several alleles of the HLA-DRB1 region (7,8). RA is associated
with the HLA-DRB1∗04 subtypes DRB1∗0401, ∗0404, ∗0405, and ∗0408 and
also in some different ethnic groups with the subtypes DRB1∗0101, ∗0102, and
DRB1∗1001 (8,9).

Recently, the general features of the molecular recognition between antigenic
peptide and the binding site on several MHC class II molecules have been eluci-
dated through crystallization of several MHC molecular complexes (10–14).
Both the MHC �-chain and �-chain contribute to the peptide-binding site,
which is made up of a �-sheet floor topped by two roughly parallel �-helical
regions (15–17). The peptide-binding motifs for some heptapeptides binding to
the DR alleles have also been determined through phage display libraries and
synthetic peptides (18–21). Peptides bind in an extended conformation in the
groove between the two helices, with about ten residues able to interact with the
MHC protein while the peptide termini extending from the binding site (20,21).
The conformation places 4–6 of the peptide side chains into pockets within the
overall groove. The residues lining these pockets vary between allelic variants,
providing different peptide sequence-binding specificity. The interaction buries
about 70% of the peptide surface area in the central region of a bound peptide,
leaving the remainder available for interaction with the antigen receptors on
T cells (21).

The binding of peptides to human and mouse MHC class II molecules is
characterized by several conserved side chain-binding pockets, namely, p1–p9
within the overall peptide-binding groove (18,19,22). The pockets are numbered
along the peptide relative to a large usually hydrophobic pocket near the peptide-
binding site. The importance of residues at p1, p2, p4, p6, and p7 on binding has
been addressed by panning M13 phage-expressed random peptide libraries (22).
An immunodominant peptide epitope of hemagglutinin (HA) (HA306-318)
from influenza A virus H3N2 has been found to bind with different DR alleles
of the MHC class II molecules (23). The �/� T-cell receptor (TCR) HA1.7
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specific for the HA antigen peptide is HLA-DR1 restricted but cross-reactive
with the HA peptide presented by the MHC class II molecule HLA-DR4 (23).
The overall structures of the HA1.7/DR4/HA and HA1.7/DR1/HA complexes
are found to be very similar, though there is a difference in the amino acid
sequence of DR1 and DR4 located deeply inside the peptide-binding groove
and out of reach by direct contact by the TCR (23). The binding of peptides
to HLA-DR1 has been strengthened by incorporating an N -methyl substitution
at p7 of the peptide (24). The N -methyl group oriented in the p6/p7 pocket
is shown to displace one of the waters usually bound in this pocket, and
the corresponding MHC–peptide complexes generated are able to activate the
antigen-specific T cells (24). The binding between MHC class II molecule
HLA-DR4 and its peptide ligands can be predicted using some interactive-type
molecular descriptors such as comparative molecular field analysis (CoMFA)
and quantitative structure-activity relationship (QSAR) techniques described in
the following sections.

2. Materials
Construction of structures for the peptide ligands should be based on the

X-ray structure of an MHC–peptide ligand complex obtained from the Protein
Data Bank (PDB). The construction of the ligand structure can be done within
the MHC active site by replacing side chains of the template with other groups
by using the SYBYL 7.1 program (25) (Build/Edit >> Sketch Molecule >>
Draw). The hydrogen atoms should be added for each structure. Each of these
structures should be rotated into the coordinate frame of the X-ray ligand before
being merged with the ligand-depleted MHC receptor. Then, each structure of
the ligand–receptor complex should be subjected to a brief energy minimization
using the SYBYL 7.1 program (Compute >> Minimize) and the Tripos60
Force Field Engine. The Gasteiger–Hückel (26) and KOLL_ALL (27) charges
can be deployed, respectively, for ligands and receptor, and a nonbonding cutoff
of 8 Å can be used for each structure complex. Each ligand structure thus
constructed is extracted from each structure complex using the SYBYL 7.1
program (Build/Edit >> Extract >> Substructures). The biological activity
of each ligand is expressed in pIC50. The entire compound set is divided
into two sets, namely, a training and test set according to the following rules
(28): (1) the entire set should contain at least 16 compounds to assure statis-
tical significance of the pharmacophore model, (2) the activity range of the
compounds should span at least 4 orders of magnitude, (3) each order of
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magnitude should be represented by at least three compounds, (4) the most
active and inactive compounds should be included, and (5) two compounds
with similar structure must differ in activity by an order of magnitude to be
included.

3. Methods
3.1. The CoMFA Descriptors Using the SYBYL 7.1 Program

1. Clear all the molecules in the display area [Build/Edit >> Zap (Delete) Molecule].
2. Make a database for the structures of peptide ligands built (File >> Database >>

New >> Put Molecule) (see Notes 1–3 for dividing data set into a training set
and a test set).

3. Perform the structural alignment for the database by using a common structure
template (File >> Align Database >>> Database to Align: >>> Template
Molecule: >>> Location of Substructure: >>> Put Molecules Into: >>>
Align:) (see Notes 4–6 for aligning structures in a set).

4. Make a molecular spreadsheet for all the ligand structures in the aligned database
(File >> Molecular Spreadsheet >> New >>> Database >>> Open). All the
ligand structures in the database are read in and entered as rows in the spreadsheet.

5. The binding activity of each ligand expressed in pKi [log(1/Ki)] should
be typed into the first column of the spreadsheet. One can also use MSS
(panel on the molecular spreadsheet): File >>> Import to import the binding
activity if it has been saved into a file. Label the column as the ACTIVITY
column.

6. The process of adding CoMFA fields involves scanning all the aligned molecules
to establish an encompassing region and computing somewhat more than 33,000
energies. On the MSS panel, select “empty column 2” and press Autofill. Select
COMFA as the new column type and press OK. (Use the default selections in
the Add New CoMFA Column dialog box. Use the Tripos Standard CoMFA
Field class. The other options are available only with an Advanced CoMFA
license. See Note 7 for choosing a grid space for computing the CoMFA
column.)

7. Perform the partial least-square (PLS) analysis on the CoMFA column created by
pressing MSS:QSAR >>> Partial Least Squares, the PLS analysis dialog box
appears.

8. Input COMFA2 as the Column to use and then input the ACTIVITY column as
the Dependent Column whose values will be predicted from the resulting PLS
analysis.

9. Perform a PLS analysis with Leave-One-Out validation where the number of
groups is equal to the number of rows selected. Toggle the SAMPLS box off
(see Notes 8 and 9 on this action). One can speed up the computation process



Predicting with QSAR MHC–Peptide Affinity 251

by using the SAMPLS option if the data set has been cross-validated beforehand.
Set Components as 5, Scaling as CoMFA Standard, Column Filtering on 2.0 (to
omit those columns whose energy variance is less than 2.0 kcal/mol). Type one
as the Analysis Name and press Do PLS. Select End when prompted to save the
analysis. Meanwhile, look into the analysis details shown in the text window and
pay attention to the cross-validated r2 value and the optimal number of components
obtained. A meaningful model can be established only when the cross-validated
r2 computed is greater than 0.5.

10. Derive the best predictive model for use in prediction and in graphic presentation
by using the best cross-validated result. Set the options as follows while the
PLS analysis dialog box is still on: Validation: No Validation, perform a PLS
analysis without any validation, this is typically done at the end of PLS analysis;
Components: 5; Scaling: CoMFA Standard; Column Filtering: on. Then, type
two as the Analysis Name, press Do PLS and then OK when asked to save
the analysis. The text window will show the r2 measure of fit, the contribution
of electrostatic and steric fields all in percentage. Press End to close the PLS
dialog box.

11. Examine the CoMFA results from the MSS panel by pressing QSAR >>> View
CoMFA. The view CoMFA dialog box is displayed. In the Display option menu,
select a mode appropriate for your terminal (see Note 10 on this action.). Press
Show and Quit to exit the view CoMFA dialog box. Read the information in the
text window. Close the spreadsheet by pressing Close in the MSS panel. Answer
Yes or No, depending on whether you want to save the spreadsheet in a table file.
If yes, type in a name for the table file. By default, the table uses the same base
name as the database and adds the extension .tbl.

3.2. The QSAR Prediction Using the Cerius2 Program

1. Start a new session of Cerius2 (29) by typing Cerius2 at the Unix prompt and the
Visualizer and Cerius2 Models windows will appear.

2. Go to the Build/3D-Sketcher panel and select the desired structural template
buttons to draw the structure.

3. Clean the structure by clicking Preferences button in the 3D_Sketcher card and a
Cleaner Controls card will appear. Select One Short Clean and Watch one-short
progress buttons. Close the Cleaner Controls card using the >< buttons and click
CLEAN in the 3D-Sketcher.

4. Minimize the drawn structure by going to OFF SETUP card and select Load Force
Field? and select cvff950_1�0�1 as the force field to use.

5. Start the RUN by clicking the radio button on the Energy Minimization card.
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6. Load molecules into the QSAR study table by going to QSAR/Show Study table.
Click the Add all button under Molecules pull-down. Type the activity data into
the column labeled as Activity.

7. Select the default options corresponding to the QSAR application by
pressing the Preferences/Default Set/QSAR menu item in the study table
menu bar.

8. Add a set of default descriptors to the study table by selecting the Descriptors/Add
Default menu item in the study table menu bar.

9. Select the column labeled as Activity in the study table by clicking the
column heading. Mark this column as dependent variables (Y ) by selecting the
Variables/Set Y menu item in the study table menu bar.

10. Select all the descriptor columns in the study table by using the < Shift >-clicking
the column headings. Mark these columns as independent variables by selecting
Variables/Set X menu item in the study table menu bar.

11. Use the genetic function approximation (GFA) method to generate a QSAR
equation by setting the Methods pop-up to GFA. Go to Preferences in the menu
bar of the study table and click Statistical Method. Click Configure GFA and then
verify that the linear term is selected. Click the RUN button to start the GFA
calculation.

12. Select the first (best) equation for validation using the cross-validation method. The
equations generated are downloaded into the Equation Viewer control panel and
sorted by the lack-of-fit (LOF) parameter. The QSAR equation is automatically
inserted as a new column labeled as GFA Predicted Activity in the study table
along with a column showing the residuals (observed—predicted activity values)
and labeled as GFA Residuals Activity. The cross-validation results of the QSAR
equation are shown in the text window.

13. Select the Tools/Equation Viewer menu in the study table menu bar to view
the terms, coefficients, and statistics of the equation. Click the More button in
the QSAR Equation section of the Equation Viewer control panel to open the
preferences control panel for QSAR equations. Then press the Auto update 2D
Plot button. Select the QSAR equation number 1 in the Equation Viewer control
panel and click the Plot Equation action button to view the 2D plot of predicted
vs. observed activity.

14. Click the Save Equations button in the Equation Viewer control panel to save
the QSAR equation. Set the pop-up to Current Equations Set in the Save QSAR
equations control panel open.

15. Predict the activity of a new molecule using the QSAR equation by adding the
molecule into the study table. Go to the File/Load Model menu item in the Cerius2
Visualizer panel and then load the molecule into Cerius2. Add the molecule to the
study table by selecting the Molecules/Add Current menu item in the study table
menu bar. (The new molecule is added at the bottom of the study table and the
predicted activity is automatically shown in the column GFA Predicted Activity.)
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3.3. The Principal Components Analysis Using the Cerius2 Program

1.

2.
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3.

4.
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5.

6.
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7.

8.
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9.

10. The PCA can be used to relieve redundancy among possibly correlated variables.
The analysis allows one to visualize most of the variance of the data set by
visualizing the first three principal components.
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Notes
1. The training set compounds should span a parameter space in which all data points

are more or less equally distributed.
2. To cover the property space with the smallest possible number of objects, one

should remove redundancy. However, in the case of poor test set prediction, some
redundancies may be included in the training set to improve the statistics.

3. A broad variety of structural features should be included in the training set in order
to allow reliable predictions for the test set compounds.

4. The structures of both training and test sets are required to be aligned by hand or
by an appropriate field fit in performing CoMFA.

5. The most popular method for molecular aligning molecular structures is least-
square fitting method, which gives the best matching of positions of atoms that have
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been decided to correspond in advance. However, aligning dissimilar molecules
should be done by methods other than least-squares matching of atom positions.

6. Obtaining biologically relevant conformations when receptor-bound crystal struc-
tures are missing is often achieved by the active-analog approach developed by
Marshall et al. (30). The active conformations of flexible compounds are deter-
mined by systematic conformational searches using geometrical constraints of a
rigid template analog. However, it must be assumed that neither the receptor
structure nor the binding mode varies for the different molecules that are examined.

7. A smaller grid space other than the default one (2 Å) may be used only for
enclosing the activity region identified by the initial CoMFA run. Decreasing the
grid spacing will increase grid points, and the noise in data is also increased,
thereby the overall statistics is deteriorated.

8. A linear regression analysis cannot be directly applied to the CoMFA descriptors
due to the enormous number of x variables generated. Both PCA and PLS can
be used to obtain a linear equation for the CoMFA descriptors. SAMPLS is a
modification of PLS analysis implemented in the SYBYL package. Owing to a
much smaller number of arithmetic operations, SAMPLS operates a few to several
orders of magnitude faster in cross-validation runs than ordinary PLS analysis.

9. In the most common leave-one-out cross-validation, one object is omitted from the
training set, and a PLS model is derived from the residual compounds. This model
is used to predict the biological activity value of the compound, which was not
included in the model. To yield more stable PLS model for larger data sets, several
objects are eliminated from the data set at a time, randomly or in a systematic
manner, and the excluded objects are predicted by the corresponding model.

10. The CoMFA results are usually presented as a set of contour maps. These
contour maps show favorable and unfavorable steric regions or electropositive or
electronegative substituents in certain positions. Predictions for the test set and for
other compounds can be made either by a qualitative inspection of these contour
maps or in a quantitative manner, by calculating the fields of these molecules and
by inserting the grid values into the PLS model.

References
1. Watts, C. Capture and processing of exogenous antigens for presentation on MHC

molecules. Annu. Rev. Immunol. 1997, 15, 821–850.
2. Rudensky, A.; Prestoa-Hurlburt, P.; Hong, S. C.; Barlow, A.; Janeway, C. A. Jr.

Sequence analysis of peptides bound to MHC class II molecules. Nature 1991,
353, 622–627.

3. Chicz, R. M.; Urban, R. G.; Lone, W. S.; Gorga, J. C.; Stern, L. J.; Vignali, D. A.;
Strominger, J. L. Predominant naturally processed peptides bound to HLA-DR1
are derived from MHC-related molecules and are heterogeneous in size. Nature
1992, 358, 764–768.



Predicting with QSAR MHC–Peptide Affinity 259

4. Tiwari, J.; Terasaki, P. HLA and disease association. Springer-Verlag, New York,
1985.

5. Rowley, M. J.; Stockman, A.; Bond, C. A.; Tait, B. D.; Rowley, G. L.;
Sherritt, M. A.; Mackay, I. R.; Muirden, K. D.; Bernard, C. C. The effect of
HLA-DRB1 disease susceptibility markers on the expression of RA. Scand. J.
Rheumatol. 1997, 26, 448–455.

6. Weyand, C. M.; Goronzy, J. J. Inherited and noninherited risk factors in rheumatoid
arthritis. Curr. Opin. Rheumatol. 1995, 7, 206–213.

7. Nepom, G. T.; Gersuk, V.; Nepom, B. S. Prognostic implications of HLA
genotyping in the early assessment of patients with rheumatoid arthritis. J.
Rheumatol. Suppl. 1996, 44, 5–9.

8. Wagner, U.; Kaltenhauser, S.; Sauer, H.; Arnold, S.; Seidel, W.; Hantzschel, H.;
Kalden, J. R.; Wassmuth, R. HLA markers and prediction of clinical course and
outcome in rheumatoid arthritis. Arthritis Rheum. 1997, 40, 341-351.

9. Perdriger, A.; Chales, G.; Semana, G.; Guggenbuhl, P.; Meyer, O.; Quillivic, F.;
Pawlotsky, Y. Role of HLA-DR-DR and DR-DQ association in the expression
of extraarticular manifestations and rheumatoid factor in rheumatoid arthritis. J.
Rheumatol. 1997, 24, 1272–1276.

10. Stern, L. J.; Brown, J. H.; Jardetzky, T. S.; Gorga, J. C.; Urban, R. G.;
Strominger, J. L.; Wiley, D. C. Crystal structure of the human class II MHC
protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994, 368,
215–221.

11. Jardetzky, T. S.; Brown, J. H.; Stern, L. J.; Urban, R. G.; Chi, Y. I.; Stauffacher C.;
Strominger, J. L.; Wiley, D. C. Three dimensional structure of a human class II histo-
compatibility molecule complexed with superantigen. Nature 1994, 368, 711–718.

12. Ghosh, P.; Amaya, M.; Mellins, E.; Wiley, D. C. The structure of an intermediate in
class II MHC maturation: CLIP bound to HLA-DR3. Nature 1995, 378, 457–462.

13. Brown, J. H.; Jardetzky, T. S.; Gorga, J. C.; Stern, L. J.; Urban, R. G.;
Strominger, J. L.; Wiley, D. C. Three-dimensional structure of the human class II
histocompatibility antigen HLA-DR1. Nature 1993, 364, 33–39.

14. Dessen, A.; Lawrence, C. M.; Cupo, S.; Zaller, D. M.; Wiley, D. C. X-ray crystal
structure of HLA-DR4 (DRA0101, DRB10401) complexed with a peptide from
human collagen II. Immunity 1997, 7, 473–481.

15. Garboczi, D. N.; Ghosh, P.; Utz, F.; Oing, R.; Biddison, W. E.; Wiley, D. C.
Structure of the complex between human T-cell receptor, viral peptide and
HLA-A2. Nature 1996, 384, 134–141.

16. Garcia, K. C.; Degano, M.; Stanfield, R. L.; Brunmark, A.; Jackson, M. R.;
Peterson, P. A.; Teyton, L.; Wilson, I. A. An �� T cell receptor structure at 2.5Å
and its orientation in the TCR-MHC complex. Science 1996, 274, 209–219.

17. Reinherz, E. L.; Tan, K.; Tang, L.; Kern, P.; Liu, J.; Xiong, Y.; Hussey, E.;
Smolyar, A.; Hare, B.; Zhong, R.; Joachimiak, A.; Chang, H.; Wagner, G.; Wang, J.
The crystal structure of a T-cell receptor in complex with peptide and MHC
class II. Science 1999, 286, 1913–1921.



260 Lin

18. Hammer, J.; Takacs, B.; Sinigaglia, F.; Identification of a motif for HLA-DR1
binding peptides using M13 display libraries. J. Exp. Med. 1993, 176, 1007–1013.

19. Hammer, J.; Valsasnini, P.; Tolba, K.; Bolin, D.; Higelin, J.; Takacs, B.;
Sinigaglia, F. Promiscuous and allele-specific anchors in HLA-DR binding
peptides. Cell 1994, 74, 197–203.

20. Hammer, J.; Bono, E.; Gallazzi, F.; Belunis, C.; Nagy, Z. A.; Sinigaglia, F. Precise
prediction of major histocompatibility complex class II-peptide interaction based
on peptide side chain scanning. J. Exp. Med. 1995, 180, 2353–2358.

21. Hammer, J.; Callazzi, F.; Bono, E.; Karr, R. W.; Guenot, J.; Valsasin, P.; Nagy, Z.
A.; Sinigaglia, F. Peptide binding specificity of HLA-DR4 molecules: correlation
with rheumatoid arthritis association. J. Exp. Med. 1995, 181, 1847–1855.

22. Bolin, D. R.; Swain, A. L.; Ramakanth, S.; Berthel, S. J.; Gillespie, P.;
Huby, N. J. S.; Makofske, R.; Orzechowski, L.; Perrotta, A.; Toth, K.; Cooper, J. P.;
Jiang, N.; Falcion, F.; Campbell, R.; Cox, D.; Gaizband, D.; Belunis, C. J.;
Vidovic, D.; Ito, K.; Crowther, R.; Kammlott, U.; Zhang, X.; Palermo, R.;
Weber, D.; Guenot, J.; Nagy, Z.; Olson, G. L. Peptide and peptide mimetic
inhibitors of antigen presentation by HLA-DR class II MHC molecules. Design,
structure-activity relationship, and X-ray crystal structure. J. Med. Chem. 2000,
43, 2135–2148.

23. Hennecke, J.; Wiley, D. C. Structure of a complex of the human �/� T cell receptor
(TCR) HA 1.7, influenza hemagglutinin peptide and major histocompatibility
complex class II molecule, HLA-DR4 (DRA∗0101 and DRB1∗0401): insight into
TCR cross-restriction and alloreactivity. J. Exp. Med. 2002, 195, 571–581.

24. Zavala-Ruize, Z.; Sundberg, E. J.; Stone, J. D.; DeOliveira, D. B.; Chan, I. C.;
Svendsent, J.; Mariuzza, R. A.; Stern, L. J. Exploration of the p6/p7 region of
the peptide-binding site of the human class II major histocompatibility complex
protein HLA-DR1. J. Biol. Chem. 2003, 278, 44904–44912.

25. SYBYL 7.1; The Tripos Associates; 1699. Hanley Road, St. Louis, MO, USA.
26. Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity -

a rapid access to atomic charges, Tetrahedron 1980, 36, 3219–3228.
27. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.;

Profeta, S. Jr.; Weiner, P. A new force field for molecular mechanical simulation
of nucleic acids and proteins. J. Am. Chem. Soc. 1984, 106, 765–784.

28. Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20,
269–276.

29. Accelrys Inc.; Cerius2 Modeling Environment, Release 4.0, San Diego, Accelrys
Inc., 2002.

30. Marshall, G. R.; Barry, C. D.; Bosshard, H. E.; Dammkoehler, R. A.; Dunn, D. A.
The conformational parameter in drug design: the active analog approach. In
Olson, E.C. and Christoffersen, R.E. (Eds.) Computer-Assisted Drug Design, ACS
Symp. Series, Vol 112. American Chemical Society, Washington, DC. 1979,
pp. 206–226.



18

Implementing the Modular MHC Model for Predicting
Peptide Binding

David S. DeLuca and Rainer Blasczyk

Summary

The challenge of predicting which peptide sequences bind to which major histocompati-
bility complex (MHC) molecules has been met with various computational techniques. Scoring
matrices, hidden Markov models, and artificial neural networks are examples of algorithms that
have been successful in MHC–peptide-binding prediction. Because these algorithms are based
on a limited amount of experimental peptide-binding data, prediction is only possible for a
small fraction of the thousands of known MHC proteins. In the primary field of application for
such algorithms—vaccine design—the ability to make predictions for the most frequent MHC
alleles may be sufficient. However, emerging applications of leukemia-specific T cells require
a patient-specific MHC–peptide-binding prediction. The modular model of MHC presented here
is an attempt to maximize the number of predictable MHC alleles, based on a limited pool of
experimentally determined peptide-binding data.

Key Words: Modules; pockets; HLA; MHC; class I; class II; peptide; binding; prediction

1. Introduction
The major histocompatibility complex (MHC) is a highly polymorphic

collection of genes encoding membrane surface proteins, which plays an
important role in the immune system. MHC binds short peptide sequences and
presents them on the cell surface for inspection by T cells (1). In humans, MHC
is known as human leukocyte antigen (HLA).

Because of MHC’s role in recognizing pathogenic and cancerous peptides,
these genes are under high environmental pressure to be very polymorphic.

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
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Presently, 2,088 HLA alleles have been identified (2). Predicting which peptide
sequences will bind to specific MHC alleles is dependent on the amount of
experimentally determined peptide-binding data available for each allele. Such
data are only available for a small fraction of all the alleles. The goal of the
modular concept is to take advantage of similarities among alleles by utilizing
existing peptide-binding data to make predictions for alleles, for which no
peptides are available.

Although MHC polymorphism can be caused by point mutation, it is mainly a
result of gene conversion and recombination (3). Therefore, although a specific
MHC is unique, it may be identical to a second MHC in one region and
identical to a third MHC in another region. Such similarities can be exploited
by breaking down MHC into modules and correlating these modules with the
available peptide-binding data (4,5). In this way, peptide-binding data specific
for a small number of MHC variants can be applied to an expanded number of
variants.

The part of the MHC–peptide-binding groove that interacts with a specific
position in the bound peptide is known as a pocket. Originally these pockets
were designated A–F (6). Further analysis of crystallographic data in class
I HLA has provided more complete definitions of which positions in HLA
are responsible for binding certain positions in the peptide (7,8). Because
of the side chain orientation in the protein’s three-dimensional structure, the
positions responsible for peptide binding are not sequential. For example, the
particular residues in HLA class I that interact with the N-terminal amino acid
(P1 = peptide position 1) in the peptide are at positions 5, 7, 33, 59, 62, 63, 66,
99, 159, 163, 167, and 171 (7). These positions are used to define a module.
A module is the sequence of amino acids found at these positions in a specific
MHC allele. For a 9-mer peptide, a given allele will have nine modules (P1,
P2, � � � P9). Because of similarities among MHC alleles, different MHCs can
share modules when they posses the same amino acids at the defined positions
(Tables 1 and 2).

The result of this modular concept is an expanded number of MHC alleles,
for which peptide binding can be predicted.

2. Implementation
The modular prediction algorithm available via the PeptideCheck

(http://www.peptidecheck.org) website was written in Java and runs on a
Tomcat application server, utilizing servlets, java server pages, and a MySQL
database.
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Table 1
Modules for A∗0101 and A∗7401 at P1

A∗0101

Position 5 7 33 59 62 63 66 99 159 163 167 171
Amino acid M Y F Y Q E N Y Y R G Y
Other alleles with
this module:

A∗0102, A∗0103, A∗0106, A∗0107, A∗0110

A∗7401
Position 5 7 33 59 62 63 66 99 159 163 167 171
Amino acid M Y F Y Q E N Y Y T W Y
Other alleles with
this module:

A∗0256, A∗0301-14, A∗1104, A∗3001–6, 8, 9, 11, 12, A∗3101,
3, 4, 6, 9, A∗3201–4, 6–8, A∗3601–3, A∗7402, 3, 5–10

The positions listed here are positions in the HLA protein, which are likely to affect the
binding of amino acids at P1 in the peptide. The amino acids listed are those amino acids
which occur at the given positions in A∗0101 and A∗7401, respectively. These lists of nonse-
quential amino acids are the modules at P1. The alleles listed under “Other alleles with this
module” possess the same amino acids at these positions and therefore possess the same P1
modules.

Table 2
Number of modules for each peptide position

Peptide positions 1 2 3 4 5 6 7 8 9
Number of modules 176 365 424 72 298 458 282 82 405

The total number of modules for each peptide position is less than the number of HLA
proteins, because related alleles share certain modules. These numbers are based on all class
I HLA-A, HLA-B, and HLA-C proteins from the IMGT/HLA database version 2.10.0, which
contains 1,098 class I proteins.

2.1. HLA Sequence Data

HLA protein sequences are available in the IMGT/HLA database and
are regularly updated (2). Sequences can be downloaded directly from the
file transfer protocol (FTP) server under ftp://ftp.ebi.ac.uk/pub/databases/
imgt/mhc/hla/. Nucleotide and protein sequences are available in various
formats. Sequence alignments for all HLA genes are available as zip files.
Because many of the HLA sequences are incomplete (e.g., only certain exons
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have been determined), sequence alignments are necessary. Programmers may
either download the individual sequences, and align them locally, or download
the alignment files, and extract the sequence information.

2.2. Peptides

The module-based peptide-binding prediction requires collections of peptide,
which have been experimentally proven to bind MHC. Databases such as
SYFPEITHY, MHCBN, and AntiJen are good sources of peptide-binding data
(9–11). Although some databases provide binding affinities, the algorithms
described here require only that a distinction is made between binders and
nonbinders. Nonbinders are often a limiting factor. Alternatively, random
sequences of peptides can be generated and assumed to be nonbinders. This
assumption will be true for the vast majority of sequences because less than 1%
of possible peptide sequences are thought to bind HLA class I (12). The use
of random nonbinders has several precedents (13,14). In this implementation,
random nonamers were generated by randomly choosing human proteins from
the Entrez protein database. Segments of nine amino acids were then randomly
chosen.

2.3. Modules

At the heart of the modular concept lies the pocket definition. For our
purposes, a pocket is the list of positions in HLA, which is responsible for
binding a particular amino acid position in the peptide. In this study, the pockets
were defined as per Chelvanayagam’s analysis of crystallographic HLA data
(7). Alternative definitions have been provided by Saper and Reche (6,8).

A module is the sequence of amino acids found at the pocket positions
for a given allele. Modules are generated by combining the pocket defini-
tions provided by Chelvanayagam or others with the HLA protein sequences
(Table 1). Although many related alleles produce the same module sequences,
only unique sequences should be stored in the database. A second database
table can be used to correlate the module sequences with the alleles that
posses them.

2.4. Matrices and Prediction

The simplest implementation of modular peptide-binding prediction is using
a scoring matrix. When predicting binding to nonamers, the matrices are 9×20
and contain values for each amino acid at each position peptide (Table 3). The
following pseudocode demonstrates how to generate the matrix:
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Modular Matrix
For each module

Retrieve all alleles that have this module
For all alleles with this module

Retrieve all binders
For each binder

Count the amino acid at the position corresponding to
this module

Divide the scores by the number of binders found for this module

A score for a peptide’s binding ability is generated by multiplying the nine
corresponding values from the matrix. This score is indicative of the likelihood
that this peptide is a binder and can be compared to a threshold to predict
binding. In the modular matrix, the values are based on the frequencies of
the amino acids, among binding peptides, specific to a particular module (see
Note 1). Because different alleles can have certain modules in common, the
module-specific values are based on peptides that bind to all the alleles which
have that module.

2.5. Evaluating Predictive Performance

Predictive performance can be calculated using the area under the receiver
operating characteristic curve (AROC). The ROC curve is based on the
prediction’s sensitivity

SE = TP/
�TP +FN�

and specificity

SP = TN/
�TN +FP�

where TP = true positives—correctly predicted binders; FN = false
negatives—binders incorrectly predicted to be nonbinders; TN = true
negatives—correctly predicted nonbinders; and FP = false positives—
nonbinders incorrectly predicted to bind. The ROC curve is a plot of SE versus
1 SP over a range of thresholds (Fig. 1).

Using the same peptides for training as well as testing is for obvious reasons
taboo. Peptides used in testing should be excluded from the matrix scores.
This can be done by splitting the peptide data into separate training and testing
pools (e.g., two-thirds for training and one-third for testing). A method that
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Fig. 1. Receiver operating characteristic (ROC) curves. The ROC curve is a function
of specificity as well as sensitivity. The area under the ROC curve (AROC) is the
standard measure of accuracy for major histocompatibility complex (MHC)–peptide-
binding prediction. Random prediction refers to the expected results when randomly
guessing whether the peptide is a binder or nonbinder.

delivers better result, especially when few peptides are available, but is more
computationally intensive is the “jackknife” technique. Before performing the
prediction for a given peptide, the peptide and all peptides with only one amino
acid difference are removed from the training data, and the matrices were
calculated without these peptides.

A goal of the modular concept is to make prediction possible for alleles, for
which no peptide data are available. To test the modular concept, a “no-self”
evaluation is necessary. In this implementation, the values in the modular matrix
were generated and tested for a given allele, without using peptide-binding data
for that allele. For example, predictions were made for A∗0201 using binding
data from other alleles (A∗0202–0206, 0209, 0211, 0214, 0207, 2603, 6601,
6802, and 6901) but excluding peptides proven to bind A∗0201.

3. Application
The module-based HLA–peptide-binding prediction is available as part of

the PeptideCheck website (http://www.peptidecheck.org).
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3.1. Predicting HLA–peptide Binding

In the simplest case, the user can enter a peptide sequence and choose an
HLA allele. The result is a score representing the probability that the given
peptide is bound by the given allele. Alternatively, the user may enter a protein
sequence, and all possible resulting peptides are scored. Conveniently, more
than one HLA allele can be chosen at a time.

The prediction algorithm generates a score. To determine whether this score
is indicative of binding or nonbinding, it must be compared to a threshold.
Choosing a threshold is dependent on experimental context. For example,
if the user is intent on finding peptides that will have the highest chance
of binding in the laboratory, a very high threshold is recommended. If the
question is whether a peptide is or is not a minor histocompatibility antigen
(peptide derived from a variant region of a non-HLA protein) then a balanced
threshold is necessary. The threshold suggested in the PeptideCheck website is
the point at which the sensitivity and specificity curves cross. Unfortunately,
it is not possible to suggest thresholds for all predictable alleles. One can
only generate sensitivity and specificity curves when peptide-binding data are
available. However, modular peptide-binding prediction allows for prediction
when no data are available (see Note 2). In this case, no threshold can be
suggested, and it is recommended that the user compares scores to find peptides
that represent the most likely binders.

3.2. Predicting Peptide Presentation Profile/Individual’s
Peptide-binding characteristics

In the area of leukemia-specific T-cell therapy, it is important to compare the
peptide-binding profile of the patient. Peptide-binding profiles can be created
by entering the patient’s HLA genotype. In the case of a full heterozygosity,
this includes two alleles from each of the HLA-A, HLA-B, and HLA-C loci.
The user can either provide a peptide, one or more protein sequences, or a
single-nucleotide polymorphism (SNP) profile for analysis. The resulting table
displays the best binders, the proteins that they stem from, the binding score,
and to which alleles they bind.

3.3. Exploring Modular Relations Between HLA Alleles

To understand the relations between various HLA alleles, it can be useful to
compare them at the modular level. This is particularly useful when choosing
which HLA alleles to study when determining peptide-binding motifs. After
selecting an allele, the user is presented with the list of modules that this allele
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possesses. Clicking on a module brings up the list of alleles that possess this
module. If binding motifs are available, they are also displayed. In this way,
the user can choose an allele and find information about its binding motif
based on the binding data for other alleles. Conversely, the user may determine
which other alleles would benefit from the binding data of the target allele, if
its peptides were to be purified and sequenced. In this way, researchers can
choose those alleles for study, which are the most informative on a modular
level. Prioritizing alleles in this way will ensure that peptide-binding data be
found most efficiently to maximize modular peptide prediction.

Notes
1. Although the modular concept of HLA has been shown to be successful in expanding

the number of predictable HLA alleles, the implementation described here has
several drawbacks. The matrix scores are based on the assumption that there is a
correlation between the rate of occurrence of particular amino acids at particular
positions in the peptides and the importance of those amino acids in peptide binding.
Although this may be true for pool sequences, many of the peptides in the peptide
databases are of synthetic origin. The synthetic peptides are based on known binders
but contain specific amino acid substitutions, with the goal of uncovering the roles of
certain positions in the peptide. These synthetic peptides invalidate the assumption
mentioned above. Drawing a correlation between peptide sequences and binding
affinity is certainly a solution to this problem.

2. The modular concept will be expanded in the future to make prediction possible for
more alleles, through the clustering of modules. There are module sequences that
differ only slightly from each other, and which bind the same amino acids, despite
small differences. Such modules will be clustered together in future implementa-
tions to maximize the usability of the provided peptide-binding data. Module-based
supertypes are also an interesting consequence of such an analysis.
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Support Vector Machine-Based Prediction
of MHC-Binding Peptides

Pierre Dönnes

Summary

The use of major histocompatibility complex (MHC) class I binding peptides for immunother-
apeutic purposes has shown promising results in recent years. The identification of such peptides
mostly starts with predicting MHC-binding peptides, given a protein of interest. An accurate
prediction method can reduce the number of peptides that needs to be tested experimentally.
This protocol describes in this describes how support vector machines (SVMs) can be used for
predicting MHC class I binding peptides. Focus is given on data representation, the concept of
cross-validation, and how optimal SVM-specific parameters are obtained.

Key Words: Support vector machines (SVMs); MHC binding; immunotherapy

1. Introduction
Major histocompatibility complex (MHC)–peptide binding is a prerequisite

for T-cell activation in the immune system. In recent years, MHC-binding
peptides have shown promising results for immunotherapeutic purposes and
in vaccine development. In silico identification of MHC-binding peptides
can reduce the number of peptides that need to be tested experimentally,
and many different approaches have been proposed. These include sequence-
based methods such as position-specific scoring matrices (PSSMs) (1,2) and
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neural networks (3). Several structure-based methods such as threading (4) and
molecular dynamics approaches (5) have also been presented. Furthermore,
support vector machines (SVMs) have been applied for this prediction task and
have shown higher accuracy compared to both the SYFPEITHI (1) and BIMAS
(2) methods for many MHC alleles (6). PSSM methods typically assign a score for
each amino acid in every position of the peptide, hence assuming an independent
contribution of each amino acid to the overall binding energy, whereas SVMs can
model the data in a “nonlinear” fashion.

SVMs is a supervised machine learning method, able to learn the input/output
functionality of a given problem. Machine learning methods in general can
be seen as a descendant from statistical learning, and the term “learning” is
used because early methods were inspired by the learning process of the brain.
The field of molecular biology has been described as tailor-made for machine
learning approaches (7), where a vast amount of data are available, but the
underlying theory is not fully understood. In this case, the input is a peptide
and the output is one of the classes, MHC binding or non-MHC binding. SVMs
use linear functions to separate data points, and the nonlinearity is given by a
“kernel” mapping of the input data. Detailed theory of SVMs can be found in
several comprehensive textbooks (8,9). The aim of this protocol is merely to
describe how SVMs can be applied for predicting MHC class I binding peptides.

The starting point of this protocol is a set of peptides known to bind a
certain MHC allele. Furthermore, a set of nonbinders is needed in order to
train the SVMs to discriminate between binders and nonbinders. The peptide
information then has to be represented in a format that can be used by the
SVM software. Some preprocessing of the data, such as removing sequences
containing unknown amino acids or duplicate entries, is also carried out. The
next step is to generate and test SVM models using different parameter settings.
Because no real theory exists for choosing the kernel and related parameters,
a systematic search of the parameter space is carried out. To find the best
parameter setting, a measure of prediction performance is needed. Here we
will use fivefold cross-validation together with Matthews correlation coefficient
(MCC) (10) to obtain a measure of the prediction accuracy. The optimal SVM
model finally obtained can be used for predicting new peptides likely to bind
the MHC molecule of interest.

2. Materials
The material needed to develop the prediction method is a data set of

MHC-binding and nonbinding peptides. Furthermore, an implementation of an
SVM learning algorithm is needed. Basic knowledge in a scripting language (e.g.,
Perl, php, or python) and a functioning UNIX/Linux environment is also required.
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2.1. Peptide Data

2.1.1. MHC-binding Peptides

Major histocompatibility complex-binding peptides can be extracted from
existing databases, such as SYFPEITHI (1) and MHCPEP (11), or obtained
from own experiments. On what allele resolution the data is taken might vary.
In some cases all HLA-A∗02 binding peptides might be used, whereas in
other cases only verified HLA-A∗0204 peptides are used. MHC class I binding
peptides typically have a length between eight and ten amino acids. Here the
sequence itself is used for SVM training, meaning that different models should
be generated for different peptide lengths. Here we will assume that a data set
of 100 9-mer peptides is used.

2.1.2. Nonbinding Peptides

Because the aim is to make a classification between MHC-binding and
nonbinding peptides, a set of nonbinding peptides is also needed. Most public
databases do not contain such information, and one way to obtain such a set is
to extract random peptides of the desired length from existing protein databases.
Here the SWISSPROT database (12) is used for extracting a set of nonbinding
peptides. Extracting peptides randomly from a protein database induces a risk of
allowing some MHC-binding peptides into the nonbinding data set. However,
in most cases, the probability of doing so is relatively small, because very few
peptides of a given protein usually bind a certain MHC allele (13).

2.2. SVM Implementation

The SVM implementation used here is SVMLIGHT (14), which can be
downloaded from http://svmlight.joachims.org/ (also see Note 1). SVMLIGHT is
implemented in the C programming language, and it has been used for many
different bioinformatics classification task. The SVMLIGHT software can be
downloaded and installed by the following steps:

1. Download the svm_light.tar.gz file from http://svmlight.joachims.org/
2. Create a new directory: $mkdir svm_light
3. Unpack everything: $gunzip -c svm_light.tar.gz | tar xvf -
4. $make

This will generate two executable files svm_learn and svm_classify.
The svm_learn module is used to learn the input/output functionality, given
a labeled set of training data. The svm_classify module can then use the
classification model generated by svm_learn for prediction.
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3. Methods
In this section, all the important steps for generating an SVM-based

prediction method for MHC class I binding peptides are outlined. Focus is
put on important concepts, and examples are given for data representation
and cross-validation. No example code is given for processing files containing
peptide sequence into files in the SVM software format, and so on. This is
a trivial task assuming some basic knowledge in any scripting language. It is
also suggested that functions using the SVM software by system commands are
implemented in the scripting language of choice. By doing this, small scripts
can be used for data processing, SVM training, and performance evaluation.

3.1. Peptide Data

The peptide data needs some preprocessing before it can be represented in the
data format used for SVM training. The data set of binders should be processed
in order to remove duplicate entries and sequences containing unknown amino
acids (usually indicated by the letter “X”). Some extra care should also be
taken with sequences obtained from alanine scan experiments, and so on
(see Note 2).

A data set of nonbinding peptides can be constructed from proteins in the
SWISSPROT database. A local copy of the SWISSPROT database can be
obtained from ftp://ftp.ebi.ac.uk/pub/databases/swissprot/. The following steps
can be carried out in order to extract a data set of nonbinders.

1. Randomly extract 10,000 proteins from the database.
2. Chop these protein sequences into peptides of the desired length (same as the

MHC-binding peptides data set) and store them as keys in a hash map (will remove
duplicate entries). Randomly pick the number of peptides desired, for example,
the same number as in the binding data set in order to receive a balanced data
set. Peptides also found in the data set of binders should not be included in the
nonbinder data set.

3.2. Using SVMLIGHT

3.2.1. Using svm_learn

The svm_learn module is for reading an input file and to generate a model
for prediction. It is used in the following way:

$svm_learn [options] training_data model_file

The training_data file contains the labeled examples for which a
functional mapping should be found, and the format of this file is described
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below. Here, the use of the radial basis function (RBF) kernel is described,
which means that the [options] will look like:

-t 2 -c C -g G

where -t 2 defines that the RBF kernel should be used (also see Note 3), C
defines the trade-off between error and margin, and G defines the kernel-specific
parameter gamma. How to find the optimal C and G is described below. More
information about the [options] available for svm_learn can be found in
the manual or by:

$svm_learn -?

The SVM model generated by svm_learn is saved in the model_file and
can be used by svm_classify for prediction.

3.2.2. Using Svm_classify

The svm_classify module is used in the following way:

$svm_classify [options] example_file model_file

output_file

where the example_file contains the data to be classified, the
model_file is the prediction model generated by svm_learn, and the
output_file is where the prediction results will be written. Once again more
information about the [options] parameters can be found in the manual or by:

$svm_classify -h

3.3. Data Representation

The peptide data need to be processed into the format used by the SVM
software. SVMLIGHT reads input data in the form:

Example 1:class feature1:value1 feature2:value2… .

Example 2:class feature1:value1 feature2:value2… .

This means that each peptide is represented by a separate row in the
training_data and example_file files. The class is represented by +1
for binders and −1 for nonbinders in this case. The features and related values
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depend on the type of data representation used. Here, binary sparse, encoding
is used to represent the peptides. Each amino acid is represented as a bit
vector of 20 elements, where “1” indicates the type of amino acid, see Fig. 1
(alternative data representations are described in Note 4). The total length of a
vector representing a nine amino acid–long peptide is 9×20 = 180 positions.
Figure 2 exemplifies how the dipeptides “AD” and “YC” are represented in
sparse binary format. Furthermore, Fig. 2 shows how the input files for both
svm_learn and svm_classify can be written in a more compact way,
because all features that are not given an explicit value are considered to be “0”
(which is the case for most positions of the 180 element–long input vector).

3.4. SVM Training and Evaluation

3.4.1. Creating Data Sets for Cross-validation

Most machine learning methods run the risk of overfitting the prediction
model, that is, the model perfectly reproduces the training data but lacks any
form of generalization ability on novel data. In order to obtain a fair estimate of
the prediction performance, fivefold cross-validation is applied. Here, both the
data sets of binders and nonbinders are split into five subsets. Four subsets of
binders and nonbinders, respectively, are then combined into a training data set,

A 10000000000000000000
C 01000000000000000000
D 00100000000000000000
E 00010000000000000000
F 00001000000000000000
G 00000100000000000000
H 00000010000000000000
I 00000001000000000000
K 00000000100000000000
L 00000000010000000000
M 00000000001000000000
N 00000000000100000000
P 00000000000010000000
Q 00000000000001000000
R 00000000000000100000
S 00000000000000010000
T 00000000000000001000
V 00000000000000000100
W 00000000000000000010
Y 00000000000000000001

Fig. 1. In sparse binary representation, each amino acid is represented as a vector
of 20 elements. The vector contains 19 “0” positions and a “1” indicating the type of
amino acid.
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10000000000000000000 00100000000000000000

A D

AD +1 1:1 23:1

YC 0000000000000000000101000000000000000000

Y C

-1 20:1 22:1

Peptide Sparse binary encoding of peptide SVM input

Fig. 2. An example of how the two dipeptides “AD” and “YC” are encoded using
binary sparse encoding. Furthermore, the format of these in the SVM input file is
shown, assuming “AD” is a binder (+1) and “YC” as a nonbinder (−1). Here the
features having a “0” value can be left out, giving a more compact representation.

and the two left out are used for testing (also see Note 5). Assuming a data set
of 100 binders and a data set of 100 nonbinders, each training set will contain
160 sequences (80 binders and 80 nonbinders), and each test set will contain 40
sequences (20 binders and 20 nonbinders).

3.4.2. SVM Parameter Optimization

Because the optimal parameters for each classification task are not known
from the start, it is necessary to test different parameters in order to find the
optimal ones. This is best done by a systematic sampling of the parameter space
by a grid search. Here, all combinations of two parameters are tested, given
the start, stop, and step size for each of the parameters.

In the case of an RBF kernel, the two parameters c and g can be optimized.
Hsu et al. (15) suggest that a good strategy is to try exponentially growing
parameters. In the RBF case, this could mean c= 2−5, 2−3� � � � 215 and g= 2−15,
2−13� � � � 23. For a given parameter setting, five SVM models are generated
and used to predict the test data sets. By comparing the known labels with
the predicted values, the prediction accuracy can be calculated (positive
prediction scores mean that the predicted class is +1 and negative scores mean
predicted −1 class). Four variables are defined and used for this purpose: true
positives (TP)—the number of binders predicted as such, true negatives (TN)—
the number of nonbinders predicted as such, false positives (FP)—the number
of predicted binders that actually are nonbinders, and false negatives (FN)—the
number of predicted nonbinders that actually are binders. From these values,
the MCC can be defined as:

MCC = �TP ×TN�− �FP ×FN�√
�TN +FN� �TN +FP� �TP +FN� �TP +FP�

A perfect correlation between predicted and real values would give an MCC
of 1, random predictions an MCC of 0, and anti-correlated predictions a value
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of −1. Furthermore, the specificity (SP) and sensitivity (SE) of the prediction
can be defined as:

SP = TN
TN +FP

SE = TP
TP +FN

A general procedure for the whole SVM optimization is given below,
assuming that the data have been split into training and test files as described
above.

1. Choose initial kernel parameters c and g.
2. Train five different SVM models, using the parameters chosen in order to obtain

five prediction models.
3. Use the test files and their respective model files for prediction. The results are

saved in five result files.
4. Compare the five result files with the labels in the respective test files. Sum up the

total number of TP, FP, TN, and FN. Calculate the performance measures MCC,
SP, and SE. Save the performance measures and parameters to a file.

5. Update the kernel parameters and go back to Step 2. Alternatively if all parameter
combinations have been tested, move on to Step 6.

6. Search the files containing the parameter setting and parameters for the best MCC.
7. Use the optimal parameter setting and all data to train a SVM model that subse-

quently can be used for prediction.

3.5. Predicting New Data

The optimized model generated above can now be used for prediction of
new data. Typically this involves the identification of candidate binders from
a given protein. The following steps can be carried out for such a prediction:

1. Use a sliding window to generate all peptides from a given query protein.
2. Write these peptides into an example_file that can be used by the

svm_classify module. (It does not matter if the peptides are labeled +1 or −1)
3. Use svm_learn and the optimal SVM model for prediction.
4. Associate all peptides with their corresponding prediction score and sort everything

according to the scores. The most likely binders have the highest scores.

Notes
1. A good overview of available SVM implementations can be found at

http://www.kernel-machines.org/. A number of tutorials and related information
about kernel machines can also be found here.
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2. Some databases contain many synthetic peptides with a high degree of similarity.
This might lead to a bias of the data, and sometimes it is useful to remove too similar
sequences from the training data. For example, the maximal sequence identity
between two peptides in the training data set might be six out of nine positions.

3. SVMLIGHT also allows easy usage of the linear, polynomial, and tanh functions.
These also have kernel-specific parameters that have to be optimized, and grid
search strategies can be applied here as well. More information about these kernels
are found in the SVMLIGHT manual.

4. An alternative way to represent the data is to use the amino acid properties found in
the AAIndex database (16). These include, for example, hydrophobicity, size, and
charge. A 9-mer peptide where each amino acid is represented by two features will
then have a total of 18 features.

5. Cross-validation can generally be conducted at an N-fold level. If very little data
are available leave-one-out cross-validation can be used, where one example at the
time is used as test data and all other data are used for training.
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In Silico Prediction of Peptide–MHC Binding Affinity
Using SVRMHC

Wen Liu, Ji Wan, Xiangshan Meng, Darren R. Flower, and Tongbin Li

Summary

The binding between peptide epitopes and major histocompatibility complex (MHC) proteins
is a major event in the cellular immune response. Accurate prediction of the binding between
short peptides and class I or class II MHC molecules is an important task in immunoinformatics.
SVRMHC which is a novel method to model peptide–MHC binding affinities based on support
vector machine regression (SVR) is described in this chapter. SVRMHC is among a small handful
of quantitative modeling methods that make predictions about precise binding affinities between
a peptide and an MHC molecule. As a kernel-based learning method, SVRMHC has rendered
models with demonstrated appealing performance in the practice of modeling peptide–MHC
binding.

Key Words: SVR; SVRMHC; epitope binding; modeling

1. Introduction
Major histocompatibility complex (MHC) molecules are polymorphic glyco-

proteins found on cell membranes. They are capable of binding small peptide
fragments derived from pathogen proteins, forming MHC–antigenic peptide
complexes. These complexes are then recognized by the T-cell receptors
(TCRs) on the T-cell surface, inducing cellular immune responses. There
are two major types of MHCs. Class I MHCs are expressed by nearly all
nucleated cells in vertebrates, and they are recognized by CD8-expressing
T-cytotoxic (Tc) cells. The peptides that bind class I MHCs are often
cleavage products from intracellular proteins, and their lengths are usually short
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(8–11 amino acids). Class II MHC molecules are expressed only by antigen-
presenting cells, and they are recognized by CD4-expressing T-helper (Th)
cells. The peptides recognized by class II MHCs are antigen peptides that are
longer and more variable in lengths (between 10–20 amino acids). Because
of the central role played by MHCs in the cellular immune responses, in
silico prediction of peptide–MHC binding has remained a critical task in
immunoinformatics. A wide variety of methodologies have been applied in this
field, including motif searching (1), position-specific scoring matrices (PSSMs)
(2–5), artificial neural networks (ANNs) (6–8), hidden Markov models (HMMs)
(9), support vector machine (SVM) classification (10,11), three-dimensional
quantitative structure-activity relationship (3D QSAR) (12–14), and partial
least square (PLS)-based modeling (15–18). Here, we describe a recently
developed support vector machine regression (SVR)-based method, named
SVRMHC. As a kernel-based learning method, SVRMHC exhibits pleasant
predicting performance enjoyed by other SVM methods such as SVMHC (10)
and HLA-DR4Pred (11). Meanwhile, as a regression or quantitative modeling
method, SVRMHC renders models capable of providing precise information
about peptide–MHC binding, i.e., binding affinities, a feature shared by only
a handful of recent methods such as 3D QSAR (12–14) and the “additive
method” (15–18).

2. SVRMHC Modeling Overview
SVRMHC was developed with SVMs, a class of supervised learning methods

based on the principle of structural risk minimization, rooted in the Statis-
tical Learning Theory by Vapnik (19). A distinguished characteristic of SVMs
is the use of nonlinear “kernels” to implicitly map the input space into a
very high dimensional feature space, where an optimal separating hyperplane
is constructed (in the case of a classification task), or linear regression is
conducted with an �-insensitive loss function (in the case of a regression task,
or SVR). A kernel is a function in the form of K (x, y) that satisfies Mercer’s
condition, i.e., ∫∫

K�x� y�g�x�g�y�dxdy ≥ 0�

so that the mapping between the input space and the feature space can be
done by a dot product operation. Commonly used kernel functions include
the linear kernel, polynomial kernel, and the radial basis function (RBF)
kernel.
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Kernel name Kernel function

Linear kernel K�x� y� = x • y
Polynomial kernel K�x� y� = �x • y +1�d

RBF kernel K�x� y� = e−���x−y��2

More information about SVM and SVR can be found in (19–21).
In SVRMHC, the input peptide sequences can be represented by either the

commonly used “sparse encoding” method (10,22) or by a “11-factor encoding”
scheme, which were constructed to include several important general physic-
ochemical properties (polarity, isoelectric point, and accessible surface area)
and a number of properties that were identified in 3D QSAR analysis (23) as
key determinants of peptide–MHC interaction (volume, number of hydrogen-
bond donors, and hydrophobicity) (24). Our experience is that the 11-factor
encoding scheme often renders more accurate models than sparse encoding. The
binding affinity of a peptide is represented in the form of pIC50 (the negative
logarithm of IC50) or pBL50 (the negative logarithm of the half-maximal binding
level BL50). A SVRMHC model is constructed by training, with a set of
(sequence:pIC50) or (sequence:pBL50) pairs. After the model is constructed, it
can make prediction of the binding affinities of untested peptide sequences.

The source code of SVRMHC and executables for the Linux and DOS
operating systems can be downloaded at http://svrmhc.umn.edu/SVRMHC/
download/.

3. Execution
3.1. Training a Model for a Class I MHC Molecule

The following command will construct a SVRMHC model for a class I MHC
molecule with the default setting:

svrmhc -train -i input_file -m model_file

The input_file should be a multiline text file, each line consisting of the
peptide sequence and the pIC50 of the peptide separated by the tab character
“\t”. The peptide sequences should all be of the same length (8, 9, or 10).
The output of this command model_file stores the information of the
constructed model.

In the default setting, the 11-factor encoding scheme is applied; a five-fold
cross-validation scheme is used, that is, the data set is randomly split into five
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subsets, model parameters are optimized by assessing the predicting performance
on each of the five subsets in turn; the RBF kernel is used; and an iterative
outlier removal procedure is taken, where a residual threshold of 2 is used for
outlier determination. In other words, after a model is constructed, prediction
is made on each peptide in the training data set. If at least one of the peptides
exhibits a higher residual than the default residual threshold 2, then the peptide
with the highest residual is excluded as an outlier, and the model is re-trained.
This process is repeated until no more outliers can be identified. A warning
message will be generated if an excessive number of peptides (>5% of the
training data set) are determined as outliers by this method. In this case, the user
should adjust the residual threshold or change the setting for model construction,
for example, choose another encoding method or another kernel function.

To change the encoding method, the option -e can be used: -e sparse
denotes the using of the sparse encoding scheme. The option -k can be used
to change the kernel function, for example, -k polynomial denotes the
using of the polynomial kernel, and -k linear denotes the using of the
linear kernel. The residual threshold for outlier determination can be changed
by the -o option, for example, -o 2.5 will adjust the residual threshold to
2.5. Or else, the outlier removal can be turned off all together, by the option
-r no_remove.

The way by which the cross-validation is done can be adjusted by the -v
option, for example, -v 7 denotes the using sevenfold cross-validation. Leave-
one-out (LOO) cross-validation can be specified by -v LOO.

The following example shows how to construct a SVRMHC model with
sparse encoding scheme, polynomial kernel function, LOO cross-validation,
and an outlier removal procedure with 2.5 as the residual threshold:

svrmhc -train -e sparse -k polynomial -v LOO -o 2.5 -i

input_file -m model_file

The achievement of an accurate SVRMHC model requires proper choosing
of kernel parameters, namely, � for the RBF kernel, n for the polynomial
kernel, and kernel-independent parameters, namely, � and C [see, for example,
(25) for explanations about the meaning of these parameters]. By default, an
automatic parameter optimization procedure is invoked, in which a grid search
is performed in default parameter ranges with equal step size on the logarithm
scale. The default ranges for � and C are between the 1/10 of the recommended
values and ten times the recommended values; the recommended values are
calculated according to (26). The default range for � for the RBF kernel is
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[0.001, 1]. For these three parameters, �, C, and �, the default number of steps
used in the grid search is 5. For the kernel parameter n of the polynomial kernel,
three possible values 2, 3, and 4 are searched by default. Our experience is
that the automatic parameter selection procedure invoked in the default setting
suffices to find the best model in most situations. However, the user can choose
to manually adjust the search ranges and the number of steps in grid search.
The program documentation provides more details about these options.

When the training of the model initializes, key information about the setting
of the training (e.g., encoding method, the way cross-validation is done, kernel
function, and residual threshold for outlier determination) is displayed on the
screen. As the execution of the program continues, information about the
progress of the execution is shown on the screen. At the completion of the
program, a summary of the training is displayed that includes the RMS error,
cross-validated correlation coefficient r , and cross-validated q2 of the resulting
model. The program documentation provides the definitions of these perfor-
mance measuring metrics.

3.2. Making predictions with an established class I model

The following command will make predictions about pIC50/pBL50 for a set
of peptides with an established class I SVRMHC model:

svrmhc -predict -i input_file -m model_file -s result_file

The input_file needs to be a single line or multiline text file, each line
containing a peptide sequence. The result_file will contain the predicted
pIC50/pBL50 values listed together with the peptide sequences.

3.3. Training a model for a class II MHC molecule

The extension of the SVRMHC methodology to the case of the class II MHC
molecules is done largely in accordance with (16). The additional considerations
about the constructing and using of class II models include (a) aligning the
peptide sequences in the training data set: this is accomplished by applying the
iterative self-consistent algorithm that performs a greedy search of the optimal
alignment; (b) limiting the number of possible alignments of input sequences
to a controllable size: this is done by specifying a key anchor position and
allowing a limited number of residues to occur at this anchor position; and (c)
positioning of the sequences in the test data set: this is carried out by providing
three options for positioning—mean, max, and combi, as described in (16).
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The following command will construct a SVRMHC model for a class II
MHC molecule with default setting:

svrmhc -classII -train -a anchor_position -l anchor_residues

-i input_file -m model_file

In this command, -classII -train indicates the training of a class II
SVRMHC model. The anchor_position is an integer specifying the key
anchor position for the purpose of limiting the number of possible alignments.
The anchor_residues is a string specifying a list of possible amino acid
residues allowed at the key anchor position. For popular MHC molecules,
such information can be obtained from the SYFPEITHI database (3). The
input_file should conform to the same format requirement as for class
I models. Each peptide sequence in this file should be of length ≥9. The
model_file will store the information about the constructed model.

By default, only one iteration of the iterative self-consistent algorithm is
executed in the searching of optimal alignment for the input sequences. This
is because our experience shows that one iteration of the greedy search often
produces a good model already. Sometimes, the search does not converge,
and the model performance actually deteriorates with increasing number of
iterations. The number of iterations can be changed manually with the option
-n, e.g., -n 4 denotes that four iterations of the greedy search will be executed.

Other options, including those for sequence encoding scheme, kernel
function, outlier removal procedure, cross-validation, and the selection of
kernel parameters and kernel-independent parameters, can be manually adjusted
similarly to the case of class I model construction.

3.4. Making predictions with an established class II model

The following command will make predictions for a set of peptides with a
class II SVRMHC model:

svrmhc -classII -predict -I input_file -m model_file

-s result_file

By default, combi is used for the positioning of the sequences in the testing
set. This can be adjusted with the option -p: -p mean and -p max will set
the positioning method to mean and max, respectively.
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4. Discussion
Based on kernel learning machines, SVRMHC is a method to construct

quantitative models about the binding between peptides and MHC molecules.
The SVRMHC method not only demonstrated good performance in quantitative
modeling, but it was also shown to outperform several prominent qualitative
modeling methods in the ability to identify strong binding peptides (24). We
have constructed and tested SVRMHC models for more than 40 class I or class
II MHC molecules. Most of these models exhibit fairly decent performance.
How good a model can be constructed is determined by many factors. First
and foremost is the input data quality. The AntiJen database (27) has been
our major data source, and the data sets it provides are often of satisfactory
quality. The number of peptides in the data set is also an important factor. The
“rule of thumb” we apply requires the binding data of at least 30 peptides for
constructing a model of a class I MHC molecule, and at least 50 peptides are
required for constructing a model for a class II MHC molecule. Understandably,
the encoding method and kernel function make discernable difference in the
performance of the resulting models. The models constructed with the “11-
factor encoding × RBF kernel” setting most often offers the best performance;
however, for some MHC molecules, other settings (“11-factor encoding ×
polynomial kernel,” “sparse encoding × RBF kernel,” and “sparse encoding
× polynomial kernel”) lead to more accurate models. Therefore, it is sensible
that all these settings be tried and the best model obtained be used. The way by
which cross-validation is done in theory will not affect the performance of the
model constructed. The adjustment of this option is often dictated by running
time consideration—if the data set is not big, for example, containing ≤100
sequences, we often chose to use LOO cross-validation. Otherwise, five-fold
or seven-fold cross-validation is used to avoid excessive execution time. The
modeling for class II MHC molecules is, not surprisingly, more problematic
than modeling class I molecules. Meticulous tuning of encoding scheme, kernel
function, number of iterations, and residual threshold for outlier determination
is often needed to obtain a satisfactory model.
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HLA–Peptide Binding Prediction Using Structural
and Modeling Principles
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Summary

Short peptides binding to specific human leukocyte antigen (HLA) alleles elicit immune
response. These candidate peptides have potential utility in peptide vaccine design and devel-
opment. The binding of peptides to allele-specific HLA molecule is estimated using competitive
binding assay and biochemical binding constants. Application of this method for proteome-
wide screening in parasites, viruses, and virulent bacterial strains is laborious and expensive.
However, short listing of candidate peptides using prediction approaches have been realized
lately. Prediction of peptide binding to HLA alleles using structural and modeling principles has
gained momentum in recent years. Here, we discuss the current status of such prediction.

Key Words: HLA–peptide binding; modeling; dynamics simulation; threading; optimization;
free energy; virtual matrix; virtual pockets; QSAR

1. Introduction
The human leukocyte antigen (HLA)–peptide project (1,2) was explored

with great momentum during the last decade by defining anchor residues in
peptide-binding motifs (3) and by the subsequent utilization of those principles
in computational tools (4–8). The difficulty in collecting immunologic or
biochemical binding data, after rigorous cloning, in vitro expression and purifi-
cation of every HLA allele to perform binding assay with a combinatorial
library of peptides, sets the limitation to define anchor residues in peptide
motifs for a wide array of HLA alleles.

Simultaneous progress in computational structural biology (9) provided a
structure-based methodology for HLA–peptide prediction (10,11). Assigning
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quantitative prediction score for the derived three-dimensional (3D) models and
the subsequent grouping (12) or ranking (10,11,13) of the modeled complexes
is of particular interest. Ranking of the modeled HLA–peptide complexes
using pair-wise potentials has been proved to preferentially select hydrophobic–
hydrophobic interaction (10). Recent attempts were made to exploit the
available structural data on HLA–peptide binding to predict the binding
affinities for HLA–peptide ligands (14). However, the analysis was restricted
to very few alleles, and future cross-validation requires more biophysical
information on diversified MHC–peptide complexes to recalibrate interaction
functions.

Addressing the fundamental question of what these complexes do and, most
importantly, how they do it by taking into account the subtle polymorphic
changes in the HLA binding groove is of interest. This will establish an under-
standing of the consequences of multiple interactions involved in the cascade
of events during cell-mediated immune response. Both class I and class II
HLA molecules possess a peptide-binding functional groove characterized by
a similar structural fold (15). Subsequently, models were developed using the
definition of virtual binding pockets, mapping of virtual pockets (VPs) to
position-specific peptide residue anchors, and estimation of peptide residue—
virtual binding pocket compatibility (16). VPs are defined using information
gleaned from eight unique HLA alleles, and the mapping of VP to position-
specific residue anchors is done using the 29 HLA–peptide structures analyzed
in this study. Here, we discuss the progress made in HLA–peptide-binding
prediction using molecular modeling principles.

2. Prediction Methods
2.1. Molecular Dynamics Simulation

Rognan et al. (17) showed the use of molecular dynamics simulation (MDS)
to discriminate peptide binders from nonbinders to HLA molecules. The free-
energy change was calculated in AMBER force field for six peptides with
HLA-B∗2705. Structural and dynamical properties of the solvated protein–
peptide complexes (atomic fluctuations, solvent-accessible surface areas, and
hydrogen-bonding pattern) were found to be in qualitative agreement with the
available binding data in these cases. This method is not suitable for high-
throughput prediction due to the high computing requirement simulation.

2.2. Self-Consistent Ensemble Optimization and Threading

Kangueane and colleagues (12) modeled peptides in the HLA binding groove
using self-consistent ensemble optimization (SCEO) discriminated binders from
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nonbinders using van der Waals clashes. Altuvia, Schueler, and Margalit
threaded (9,18,19) peptides into the HLA binding groove (10,11,20,21). This
approach is dependent on the (1) availability of appropriate peptide structural
template for threading and (2) the choice of a pair-wise potential table. The
binding affinity is estimated, and peptides are ranked using a suitable pair-wise
potential table (22–24).

2.3. Free Energy Scoring Function

A number of free energy scoring functions (FRESNOs) have been developed
for different purposes, and these functions are used for peptide binding to
HLA molecules. Rognan and colleagues (14,25,26) developed FRESNO for
predicting peptide binding to HLA molecules. However, this approach requires
appropriate structural templates for model building. An extension to this work is
EpiDock (26) applied to predict potential T-cell epitopes from viral proteomes.

2.4. Virtual Matrix

Virtual matrices (VMs), like quantitative matrices, provide a detailed model
in which binding of each peptide residue with HLA pockets is quantified using
pocket profiles as shown by Hammer and colleagues (27). VMs are derived
by assigning and combining pocket-specific binding properties using structural
features or homology principles from known HLA structures and extrapo-
lating to other alleles, whereas quantitative matrices are obtained using peptide
data with known allele-specific binding data. The advantage over quantitative
matrices is that the method is generic and can be applied to any given allele.
One implementation of the algorithm is the software package TEPITOPE (27).
The model is demonstrated for 11 HLA-DR alleles. Furthermore, they have
been successfully applied to predict T-cell epitopes in oncology, allergy, and
autoimmune diseases ( 17,28–31).

2.5. Virtual Pockets

Kangueane and Sakharkar (32) and Zhao et al. (16) developed a method
using VPs for each residue pockets gleaned from known structural data. In
this method, nine VPs are defined, and the binding affinity between HLA and
peptide is given by the sum of residue–residue compatibility between peptide
residues and corresponding VPs. The quantification of the interaction between
the HLA and peptide residue pair is calculated by the application of the Q
matrix described by Mathura and Braun (33).



296 Kangueane and Sakharkar

2.6. Computational Combinatorial Ligand Design

The computational combinatorial ligand design (CCLD) method uses the 3D
information from the crystal structure of the molecule. Zeng et al. (34) applied
CCLD for the prediction of peptides that bind HLA molecule with known
structure. Using chemical fragments as models for amino acid residues, a set
of peptides predicted to bind the HLA–peptide-binding groove were produced.
The results showed that CCLD is sensitive to capture important features of
peptide binding in sequence and structure.

2.7. Three-Dimensional Quantitative Structure Activity Relationship

Three-dimensional quantitative structure activity relationship (3D QSAR)
studies have been applied to explore the molecular interactions between HLA
and peptides. They provide coefficient contour maps identifying areas of the
peptides that require a particular physicochemical property to increase binding.
Flower and Doytchinova (35,36) applied comparative molecular similarity
indices analysis (CoMSIA) for HLA–peptide-binding prediction. CoMSIA uses
the interaction potential around aligned sets of 3D peptide structures to describe
the contributions to binding. Five types of similarity index (steric bulk, electro-
static potential, local hydrophobicity, and hydrogen-bond donor and hydrogen-
bond acceptor abilities) were calculated, using a common probe atom with 1 Å
radius, charge +1, hydrophobicity +1, and hydrogen-bond donor and acceptor
properties +1 in this method. CoMSIA can predict the binding affinity of a
peptide with a residue not presented in the initial training set. However, it cannot
assess the contribution of residues at each position and the interactions between
them. CoMSIA also returns 3D representations for visual inspection. This
approach is partly data-driven and is dependent on the quality of binding data.

3. Conclusion
The use of MDS, threading, SCEO, VM, VP, FRESNO, CCLD, and CoMSIA

is discussed for HLA–peptide-binding prediction. The complete mapping
of HLA-specific short antigenic peptides in a given viral/bacterial genome
will ultimately result in the rational identification of immunogenic epitopes.
Although, peptide–HLA specificity plays an important role in the generation of
the cell-mediated immune response, other coupled and undoubtedly important
mechanisms such as antigen processing, peptide transport, loading of peptides
to HLA molecules, and the phenomenon of T-cell receptor (TCR) repertoires
need to be considered. A better understanding of HLA specificity and the
multitude of variables associated with the cell-mediated immune response will
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lead to the development of a methodology for the generation of a library of
epitopes in silico that could be tested for HLA–peptide binding and immuno-
genicity. The successful sampling of short antigenic peptides from a pool of
viral/bacterial genome sequence using computational tools will aid in faster
and cost-effective means of identifying immunogenic peptides that could be
further tested using in vivo models, for consideration as vaccines and thera-
peutics. The application of mathematical models using computational tools is
rapidly advancing to uncover the hidden mystery behind cell-mediated immune
response. However, caveats regarding model refinement and cross-validation
have to be addressed in future.
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A Practical Guide to Structure-Based Prediction
of MHC-Binding Peptides

Shoba Ranganathan and Joo Chuan Tong

Summary

The binding of bound peptide ligands to major histocompatibility complex (MHC) molecules
plays a key role in the activation of normal immune responses and is an intricate theoretical
problem that remains unsolved. Geometric and energetic complementarities between an MHC
molecule and its corresponding bound peptide ligand are critical in determining the stability of
the complex. In this context, the introduction of structural information can greatly facilitate our
understanding of how well a peptide ligand can associate with a particular MHC molecule. This
chapter introduces the use of structural models as a predictive method to determine whether a
peptide sequence can bind to a specific MHC allele.

Key Words: MHC; binding energy; homology modeling; docking; antigens/peptides/epitopes

1. Introduction
In recent years, protein structure prediction has been gaining prominence in

the field of structural biology. A useful three-dimensional (3D) model for a
receptor–ligand complex of unknown structure can frequently be built using
a battery of bioinformatics software. In the context of peptide–MHC (pMHC)
complex, the availability of such models allows the prediction of potential
immunodominant epitopes at allele-specific level without the need of large
experimental data set for training and offers an alternative to the traditional
sequence-based predictive techniques. This chapter outlines all the stages in
a structure-based pMHC prediction session. The methodology presented here
is applicable to the design of both subtype-specific vaccine candidates and
promiscuous peptide epitopes.
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2. Materials
2.1. Data

1. MHC protein sequences to be modeled (referred to as target sequence) are obtained
from Swiss-Prot.

2. Experimental 3D structures of MHC molecules are obtained from the Protein Data
Bank (PDB).

3. Experimental binding data of pMHC complexes are obtained from the literature and
freely available databases such as MHCPEP (http://wehih.wehi.edu.au/mhcpep/),
MHCBN (http://www.imtech.res.in/raghava/mhcbn/), and JENPEP (http://
www.jenner.ac.uk/JenPep/).

2.2. Software

1. PSI-BLAST or BLASTP (http://www.ncbi.nlm.nih.gov/blast/) is used for sequence
similarity search of the target sequence against available structures in PDB.

2. CLUSTALW (1) or JALVIEW (2) is used for alignment of target and template
structures.

3. MODELLER (3), Internal Coordinates Mechanics (ICM) (4), SWISS-MODEL
(http://swissmodel.expasy.org//SWISS-MODEL.html) (5), 3D-JIGSAW (6) (http://
www.bmm.icnet.uk/servers/3djigsaw), and WHATIF (7) are used for comparative
modeling of protein 3D structures where experimental 3D structures are not available.

4. ICM (4) is used for model refinement and docking simulations.
5. PROCHECK (8), ERRAT (9), PROSA II (10), and WHATIF (7) are available in

the Biotech structure and model verification server (http://biotech.ebi.ac.uk:8400/)
to evaluate the quality of the generated model structures.

6. MATLAB (http://www.mathworks.com/) is used for the calibration of the energy
function.

3. Methods
The most important criteria for accurate prediction of MHC-binding peptides

using a structure-based approach are the availability of reliable pMHC models
and a good scoring technique to effectively discriminate binding peptides from
the background of nonbinders. The former requires an accurate prediction of
both the receptor-binding site and the bound conformation and orientation of
target ligand where experimental 3D structures are not available, whereas the
latter is necessary for finding hits with reasonable accuracy.

3.1. Modeling an MHC Receptor of Unknown Structure

The comparative protein structure modeling process involves a series of
consecutive steps, with each step depending on the success of the preceding
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one: (i) search for templates, (ii) template(s) selection, (iii) target-template
alignment, (iv) model building, (v) model refinement, and (vi) model evaluation.

3.1.1. Search for Templates

Comparative modeling generally starts by performing a sequence similarity
search of the target sequence against available structures in PDB using BLAST
(PSI-BLAST or BLASTP) to identify suitable template structures for model
building. The template structure is a sequence with known structure that is
significantly similar to the target sequence.

3.1.2. Template(s) Selection

Based on the list of potential templates obtained from BLAST, it is necessary
to identify one or more suitable templates for modeling the target structure.
Criteria for template(s) selection include (i) sequence similarity, (ii) resolution
and R-factor of crystallographic structure and the number of restraints per
residue for a nuclear magnetic resonance structure, and (iii) presence of missing
residues within the binding site. The best template for our problem would
have the highest sequence similarity, with the best crystallographic structure
(with the least value for resolution) and no missing residues in the critical
peptide-binding groove.

3.1.3. Target-Template Alignment

This critical step determines the quality and nature of the model structure.
Here, the target sequence is aligned with the template sequence to maximize
the structural similarity using either a local-similarity dynamic programming
approach (11) or a global-similarity approach (12). Although the alignment
between the query and template sequences is fairly constant in the case of
homologous sequences (> 40% identity), care is required below this value as
it is common for standard alignment methods to produce structurally incorrect
results (13). Manual inspection of automatically generated alignments must be
performed to detect and correct alignment errors. In most globular proteins, gap
regions usually occur in loops. Thus, any gaps occurring in secondary structure
elements should be “moved” to the closest loop region by manual editing.

3.1.4. Model Building

Several model building methods are available for constructing a 3D model
for the target protein, both as web servers (WHATIF, SWISS-MODEL, and
3D-JIGSAW) and as programs (MODELLER and ICM). These programs are
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either automated (SWISS-MODEL and 3D-JIGSAW) requiring only the target
sequence as input or manual (WHATIF, MODELLER, and ICM) requiring
the input of (i) the target sequence, (ii) the template structure(s), and (iii) an
alignment of the target and template sequences.

3.1.5. Model Refinement

Once the initial model has been built, geometrical improvements to the
structure and the removal of unfavorable nonbonded contacts can be performed
by simple energy minimization or molecular dynamics. These are available in
all the model building programs listed above.

3.1.6. Model Evaluation

After the initial model has been built, it is important to check for possible
errors during the modeling simulation. Evaluation of the quality of the initial
model can be performed with the support of quality evaluation programs such
as PROCHECK, ERRAT, PROSA II, and WHATIF. These programs can check
the energy profile, stereochemical quality, as well as unfavorable side-chain
environments (usually a good indicator of incorrectly folded protein structures).
A few iterations of model refinement and evaluation can be performed to
improve the overall quality of the model.

3.2. Modeling the Bound Conformation of Peptide Ligand

Computer-simulated ligand binding or docking is a useful technique when
studying intermolecular interactions or designing new pharmaceutical products.
In general, the purpose of docking simulation is twofold: (i) to find the most
probable translational, rotational, and conformational juxtaposition of a given
ligand–receptor pair and (ii) to evaluate the relative goodness-of-fit for different
computed complexes. In this section, we introduce the use of an incremental
docking technique to construct the bound conformation of peptide to MHC
molecules.

3.2.1. Selection of Probe Residue

The starting point involves the use of a probe or “base fragment” to sample
different regions of the receptor-binding site. As such, the selection of a probe is
critical to the quality of the ligand-model structure as well as the computational
time needed for simulations. Because such technique is combinatorial in nature,
the key issue in docking simulation is to enumerate the number of combinations
for two molecules within an enclosed sampling space. There are six degrees
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of global-rotational and -translational freedom of one molecule relative to the
other, as well as one internal dihedral rotation per rotational bond. A full search
on the conformational space increases exponentially with increasing molecule
size and sampling space, as a 10-residue peptide has >1010 conformations. As
such, a key challenge in pMHC-docking simulation is to keep the sampling
space within manageable limits.

A probe must satisfy two criteria: (i) the anchor must have sufficient contact
with the receptor and (ii) the structure of the anchor must be highly conserved.
Probes that are too short in length will require the exploration of a larger search
space and hence longer computational time, whereas probes that are too long
may result in insufficient sampling of the receptor-binding site. Various studies
have found that that the backbone conformation of bound peptide at both ends
of MHC class I and II binding grooves are highly conserved (14), thus offering
a good starting point for docking simulation.

3.2.2. Rigid Docking of Probe Residues

The first step involves rigid docking of the selected probe residues at
both ends of MHC–receptor binding groove using ICM global optimization
algorithm (15). Sampling of each probe is localized to small cubic regions
of 1.0 Å radius from experimentally determined binding site using a receptor
grid map and appropriate restraints. This will effectively restrict the configu-
rational space that needs to be sampled and reduce the number of false hits
generated during the simulation. The side-chain torsions of ligand within the
grid map were changed in each random step using a biased Monte Carlo
procedure, which pseudo-randomly selects a set of torsion angles in the ligand
and subsequently finding the local energy minimum about those angles. New
conformations are adopted upon satisfaction of the Metropolis criteria with
probability min(1,exp[−� G/RT]), where R is the universal gas constant and
T (usually 300K) is the absolute temperature of the simulation. The optimal
energy function used during simulations consisted of the internal energy of the
ligand and the intermolecular energy based on the same optimized potential
maps used in the docking step:

E = EHvw +ECvw +2�16Esolv
el +2�53Ehb +4�35Ehp +0�20Esolv

The internal energy included internal van der Waals interactions, hydrogen
bonding and torsion energy calculated with ECEPP/3 parameters, and the
Coulomb electrostatic energy with a distance-dependent dielectric constant
(e = 4r). The configurational entropy of the side chains and the surface-based sol-
vation energy were included in the final energy to select the best-refined solutions.
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3.2.3. Construction of the Loop Linking the Probes

In this stage, an initial conformation of the central loop is generated by satis-
faction of spatial constraints (3) based on the allowed subspace for backbone
dihedrals in accordance with the conformations of peptides docked into the ends
of the binding groove. This is performed in three steps: (i) distance and dihedral
angle restraints on the entire peptide sequence are derived from its alignment
with the sequences of probes docked into the binding groove; (ii) the restraints
on spatial features of the unknown center residues are derived by extrapo-
lation from the known 3D structures of probes in the alignment, expressed
as probability density functions, with stereochemical restraints including bond
distances, bond angles, planarity of peptide groups and side-chain rings, chiral-
ities of C� atoms and side chains, van der Waals contact distances and the
bond lengths, bond angles, and dihedral angles of cysteine disulfide bridges;
and (iii) spatial restraints on the unknown center residues are satisfied by
optimization of the molecular probability density function using a variable target
function technique that applies the conjugate gradients algorithm to positions
of all nonhydrogen atoms.

3.2.4. Refinement of the Ligand Backbone

To improve the accuracy of the initial ligand model, partial refinement
was performed for the ligand backbone, using ICM biased Monte Carlo
procedure (4). Preliminary stages of refinements attempt to overcome the
penalty derived from the initial rigid docking of terminal residues by intro-
ducing partial flexibility to the ligand backbone. Restraints were imposed upon
the positional variables of the C� atoms of probes to keep them close to the
starting conformation. The energy function adopted for this refinement step is:

E = Evw +Ehbonds +Etorsions +Eelectr +Esolv +Eentropy

3.2.5. Construction of Flanking Residues

At this stage, MHC class I ligand models have been fully constructed, and
the following task is applicable only to MHC class II ligands. Here, the only
construction remaining is the flanking residues that extend out of the MHC
class II binding groove. Flanking residues have an important contribution to the
overall free binding energy of class II peptides and should be modeled accord-
ingly. It is a common mistake to model only the nonameric core recognition
regions for class II peptides and develop a scoring function based on these core
regions alone. The entire peptide should be modeled, and flanking residues may
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be constructed by using the biased Monte Carlo procedure described above,
using the conformation of existing MHC-bound class II peptides as a guide.

3.2.6. Refinements of Receptor and Ligand Interacting Side Chains

The final stage of the modeling process involves the refinement of the
receptor and ligand side-chain torsions in the vicinity of 4.0 Å of the receptor.
This step serves to optimize the conformations of all residues involved in the
MHC–peptide interaction.

3.3. Scoring

The accuracy of structure-based predictive model relies heavily on training
the adopted scoring function using a small set of experimentally determined
binders and nonbinders with known IC50 values. In the case of class II peptides,
nonameric core recognition sequences should be known and modeled into the
binding groove appropriately. Generalized scoring functions tend to produce
inferior prediction results with poor correlation to experimental data when
confronted with the novel receptor–ligand system. The adopted scoring function
must be recalibrated to suit the data set by adjusting the relative weight of
the different energy terms to improve the discriminative power of the model.
New weights for the energy terms can be generated by performing multiple
linear regression on a small training data set using the program MATLAB. The
calibrated system is then used predictively on the test data set.

Note
1. Automated model building is not recommended unless there is a very high query-

template sequence homology. Although laborious, the quality of a structural model
based on a manual step-by-step approach is definitely better as well as biologically
viable (16,17).
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Static Energy Analysis of MHC Class I and Class II
Peptide-Binding Affinity

Matthew N. Davies and Darren R. Flower

Summary

Antigenic peptide is presented to a T-cell receptor (TCR) through the formation of a
stable complex with a major histocompatibility complex (MHC) molecule. Various predictive
algorithms have been developed to estimate a peptide’s capacity to form a stable complex
with a given MHC class II allele, a technique integral to the strategy of vaccine design. These
have previously incorporated such computational techniques as quantitative matrices and neural
networks. A novel predictive technique is described, which uses molecular modeling of prede-
termined crystal structures to estimate the stability of an MHC class II–peptide complex. The
structures are remodeled, energy minimized, and annealed before the energetic interaction is
calculated.

Key Words: MHC; antigenic peptides; energy minimization; simulated annealing

1. Introduction
Major histocompatibility complex (MHC) glycoprotein molecules play a

central role in the adaptive immune system, forming a complex with foreign
antigenic peptides and displaying them to T-cell receptors (TCRs) on the
cell surface of antigen-presenting cells (APCs). The array of MHC–peptide
complexes presented by APCs shape the specificity of the T-cell response.
Two different types of MHC molecules, class I and class II, are recognized by
distinct sets of T cells, CD8 and CD4, respectively. MHC class I molecules,
which present antigenic peptides derived from the cytosol, are composed of
an �-heavy chain, the small subunit �2-microglobulin (�2m), and an antigenic
peptide between 8 and 11 amino acids in length. The peptide is bound with a
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groove formed by the heavy chain �1 and �2 domains. Peptide-binding motifs
have previously been identified based on promiscuous epitopes with binding
affinities that transcend the specificities of individual alleles (1). In an attempt
to discover novel T-cell epitopes, various techniques have been developed to
calculate the affinity of a peptide for a given MHC class I molecule. Empirical
methods such as EpiVax (2), Artificial Neural Networks (3), Hidden Markov
Models (4), Support Vector Machines (5) and Profiles (6), and the Quantitative
Structure-Activity Relationship (QSAR)-based additive technique (7–12) have
been developed as means to calculate the affinity of a given peptide–MHC
interaction. Here, we describe how a molecular modeling approach can be used
to create a predictive system (13–14) by carrying out molecular dynamics (MD)
simulations and static energy analysis on the MHC–peptide complexes.

2. Energy Minimization Theory
Molecular modeling simulations estimate the time-dependent behavior of a

molecular system on a microscopic scale. They provide detailed information on
the fluctuations and conformational changes of proteins and nucleic acids and
are routinely used to investigate the structure, dynamics, and thermodynamics
of biological molecules. From this it is possible to analyze the interrelationships
of molecules and complexes in a theoretical environment. The technique allows
detailed information to be generated on the fluctuations and conformational
changes of proteins and nucleic acids by simulating the dynamics of experi-
mentally determined structures. These simulations can vary from local motions
(atomic fluctuations, side chain, and loop motions) to rigid body motions (helix
or subunit motions) to more large-scale motions such as helix coil associ-
ation/dissociation reactions or the folding and unfolding of proteins. A force
field is applied to the system that contains parameters for all covalent and
noncovalent interactions between all the atoms within the system. From this it
is possible to determine the position and velocity of every represented atom
after a given period of time. The method is deterministic in that the movement
of the system can be propagated forward or backward from a given time step.
Simulations aid our understanding of biochemical processes and give a dynamic
dimension to structural data. Time-dependent molecule properties may be deter-
mined from the system that approach experimentally measurable ensemble
averages. The technique may also be used to explore which conformations of a
molecule are thermodynamically plausible. An exponential increase in computer
power over the last three decades combined with the ever-increasing number
of structures within the Protein Data Bank has allowed modelers to be increas-
ingly imaginative with the applications of the software. Over the past decade,
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developments in X-ray diffraction techniques and computational methods have
allowed for an exponential increase in the number of macromolecular structures
being solved. Simulations have moved from the interactions of several atoms to
vast biomolecular systems incorporating large multimeric structures and trans-
membrane elements. The quality of the simulations has also improved more
realistic boundary conditions and better sampling times. Molecule dynamics
has also moved from being based in classical physics to begin to incorporate
quantum mechanics into force fields. As the quality of the force fields continues
to improve and the scope of the simulations graduates from the atomic to
the subcellular, there remains a huge potential for the use of the technique in
computational science.

3. Methodology
3.1. PDB Structure

In order to create a structure of a given MHC–peptide complex, the residues
of the bound peptide must be remodeled using the crystallographic modeling
program “O” (15). Mutating a residue consists of two steps: use Mutate_replace
to assign the correct residue type. “O” will put it in as the most common
side-chain rotamer. The example below would generate the MHC class II CLIP
peptide, MRMATPLLM.

O > mut_repl
Mut> Mutate a molecule by replacing one residue type
Mut> by another.
Mut> Molecule ([M1]) :
Mut> Residue name and new type ( to end) : c1 met
Mut> Residue name and new type ( to end) : c2 arg
Mut> Residue name and new type ( to end) : c3 met
Mut> Residue name and new type ( to end) : c4 ala
Mut> Residue name and new type ( to end) : c5 thr
Mut> Residue name and new type ( to end) : c6 pro
Mut> Residue name and new type ( to end) : c7 leu
Mut> Residue name and new type ( to end) : c8 leu
Mut> Residue name and new type ( to end) : c9 met
Mut> Residue name and new type ( to end) :
Mut> There are 9 mutations
Mut> The Rotamer_DB is now being loaded.

Then use the normal rebuilding tools to fit the density (lego_side_ch) to
orient the side chain into a common rotamer.



312 Davies and Flower

O > zo ; end
O > le_si_ch c1 etc.

The structure may then be outputted as a pdb file and may be used as the
basis for a molecule dynamics simulation.

3.2. AMBER

All MD simulations were carried out using AMBER Version 8 (16). AMBER
is the collective name for a suite of programs that allow users to perform various
sorts of molecular modeling (16). The individual programs can be used together
to prepare and run an MD simulation. The term amber is also sometimes used
to refer to the empirical force fields that are implemented by the programs (17).

3.2.1. LEaP

The pdb file must first be loaded into the leap program in order to generate
the topology and coordinate files necessary to begin the simulation.

tleap -s -f leaprc.ff03

Activates the leap program (tleap is a command line based version of leap;
xleap provides a graphical interface in order to visualize the system)

loadamberparams $AMBERHOME/dat/leap/parm/gaff.dat

The above command loads the AMBER force field (GAFF) into the leap
program. The force field incorporates into its parameters natural processes such
as the stretching of bonds, variations in bond angles, and rotations around a
single bond. Although various complex factors can be incorporated into the
force field, the mechanics can be summarized into four essential components.
These are bonds lengths, bond angles, torsion angles, and nonbonded interac-
tions. Deviations from a bond or an angle’s reference value are calculated as
energetic penalties in the system. The reference or natural bond length does
not represent the bond’s condition when the system is in equilibrium but the
minimum potential energy level when all other terms in the force field are
set to zero. The interaction of the various atomic forces cause the system to
deviate from the reference values in order to compensate for other forces being
placed upon individual bond or angles. GAFF has been specifically designed
to cover most pharmaceutical molecules and is compatible with the tradi-
tional AMBER force fields in such a way that the two can be mixed during
a simulation. Like the traditional AMBER force fields, GAFF uses a simple
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harmonic function form for bonds and angles, but unlike the traditional protein-
and DNA-orientated AMBER force fields, the atom types used in GAFF are
much more general such that they cover most of the organic chemical space.
The current implementation of the GAFF force field consists of 33 basic atom
types and 22 special atom types. It should be recognized, however, that the
code and force field are separate: several other computer packages have imple-
mented the amber force fields, and other force fields can be implemented with
the amber programs.

x = loadpdb mhc.pdb

The above command loads the pdb file you have created into the program.
It now exists as the unit x. The full structure of the HLA-A∗0201–peptide
complex was explicitly represented within the simulation.

solvatebox x TIP3PBOX 6

Hydrogen atoms were added to the structure, and the system was fully
solvated using TIP3 waters. The command

check x

may also be used here to check for inconsistencies that may cause problems
with a simulation.

saveamberparm x mhc.top mhc.crd

The above command saves the topology and coordinate files as mhc.top
and mhc.crd, respectively. This command will cause LEaP to search its list of
PARMSETs for parameters defining all of the interactions between the ATOMs
within the UNIT. The output of this operation can be used for minimizations,
dynamics, and thermodynamic integration calculations.

3.2.2. Sander

The energy of the solvated molecular complex was minimized using a
steepest descent method that continued for 20,000 1 fs time steps or until the
root mean square deviation between successive time steps had fallen below
0.01 Å.
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3.2.2.1. Energy Minimization

sander -i minimise.inp -o MHC.out -p MHC.top -c MHC.crd -ref

MHC.crd -r MHC.restrt

The minimize.inp (Appendix 1) provides the parameters for the simulation.
MHC.out provides the details of each simulation, and MHC.restrt contains the
new coordinate file generated by the program. The system is now at a point of
sufficient equilibrium to begin an MD simulation.

3.2.2.2. Molecular Dynamics

sander -i md.inp -o MHC_MD.out -p MHC.top -c MHC.restrt -ref

MHC.restrt -r MHC_MD.restrt -x MHC_MD.traj

md.inp (Appendix 2) provides the parameters for the simulation. The
simulation was run for a minute and a new coordinate file, MHC_MD.restrt,
was generated.

3.2.3. Anal

Following MD, static energy analysis is carried out on the protein–water
system using the anal program. Anal calculates the group–group interaction
energies between different parts of the system based on the position of their
composite atoms.

anal -i anal.inp -o analout -p MHC.top -c MHC_MD.restrt

The input file, anal.inp, is presented in Appendix 3. The interaction energies,
which are measured in kcal mol−1, may be calculated between all residues
comprising the peptide and MHC molecule or they may be calculated for the
individual interaction between composite residues. Three values are generated
for each interaction: the electrostatic interaction energy, the van der Waals
interaction energy, and the total interaction energy (which is the sum of the first
two terms). The interaction energies reflect the affinity between the peptide
and the MHC molecule and as such may be used as the basis of a predictive
system.



Energy Analysis of MHC–Peptide Binding Affinity 315

3.3. Correlation

The degree of correlation can be calculated by comparison with the exper-
imentally determined IC50 or BL50 data. The AntiJen database is a compre-
hensive of all the binding data that are publicly available (18–20). The data
set may be broken down into a training and test set; the former can be used
to optimize the parameters of the simulation. It is not necessary for the MHC–
peptide complex to undergo large conformational shifts to reach the global
energy minimum, and therefore, it is not necessary to expose system to extreme
temperatures. Affinity can then be calculated for the test set and compared
with the experimental values. An overall interaction energy may be calculated
between the receptor and ligand, which may be used as the basis for corre-
lation coefficient and receiver operating characteristic (ROC) analysis (13). A
more sophisticated approach, however, is to break the interaction energies into
the component residues and use QSAR analysis to search for key residues
that may act as descriptors in a predictive model (14). This is similar to the
COMBINE method, where structural data are combined with QSAR analysis
to predict receptor–ligand affinity, which has previously been used success-
fully on various complexes (21–23). Both MHC Class I and Class II predictive
algorithms generated that were either comparable with or surpassed other
predictive techniques. However, the molecular dynamics technique are far more
computationally expensive than other available techniques.

4. Discussion
All these prediction techniques have been limited in their accuracy by the

quality of their scoring function. The determinants of binding include van der
Waals interaction energy, electrostatic interaction energy, and the hydrophobic
component. It is, however, possible that static energy analysis overlooks a
significant energetic interaction that takes place during the binding. The actual
thermodynamic property that we are trying to estimate with the scoring function
is the Gibbs free energy of binding, �G, which is the energy that is released
when ligand and receptor bind. It may be represented as �G = �H − T�S,
where �H is the enthalpic (internal) energy, and T�S is an entropy term,
which is indicative of the relative gain or loss of disorder when ligand and
receptor bind. The �H is roughly approximated by the calculation of the
internal energy interactions but does not incorporate the entropic contribution,
in particular, the behavior of the water molecules in the active site that are
displaced when binding occurs. This is unfortunate as there is much evidence
to suggest that the binding of a ligand to a receptor is as much driven by
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entropic energy contributions as enthalpic. A transition state exists within the
molecule between the peptide-bound and peptide-unbound states (24). It is
likely that the movement from free peptide to this transition state is favored
entropically but not enthalpically. However, the change from the transition state
to the bound complex is both entropically and enthalpically favorable. The
binding groove is hydrophobic in character, particularly in the region of the
anchor residues, and the calculated energy interactions reflect this, particularly
with the high incidence of charge–charge interactions within the groove. It is
necessary for the solvent entropy from the burial of hydrophobic groups to
offset the reduction in peptide conformational entropy that occurs upon binding.
The measured interactions reflect the formation of hydrogen bonds and salt
bridges that occurs when the peptide moves from the loosely packed, partially
hydrated interface to stable complex. Water is stripped from partial and fully
charged MHC and peptide residues and there is a reduction in the favorable
hydrogen bond enthalpy associated with hydrophobically oriented water. It is
also the entropic contribution that lowers the activation barrier necessary for
the dissociation of the peptide. Hence, both the association and dissociation
of the peptide is essentially an entropically driven process. In taking the work
forward, it is therefore necessary to incorporate the entropic contribution to
the energetic calculation into the descriptors in order to create a more accurate
representation of the free-energy change between the MHC molecules bound
and unbound states.
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Appendix 1: Minimize.inp
# do minimization of all only to 0.01Ang, using EWALD:
&cntrl
imin = 1,
nmropt = 0,
ntx = 1,
irest = 0,
ntrx = 1,
ntxo = 1,
ntpr = 50,
ntave = 10,
iwrap = 0,
ioutfm = 0,
ntf = 1,
ntb = 1,
ntwx = 2000,
dielc = 1,
cut = 8.0,
scnb = 2,
scee = 1.2,
ibelly = 0,
ntr = 0,
maxcyc = 3000000,
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ntmin = 1,
ncyc = 100,
dx0 = 0.01,
drms = 0.01.

Appendix 2: md.inp
# do minimization of all only to 0.01Ang, using EWALD:
&cntrl
imin = 0,
irest = 0,
ntx = 1,
ntt = 1,
temp0 = 300.0,
tautp = 0.2,
ntp = 1,
taup = 2.0,
ntb = 2,
ntc = 2,
ntf = 2,
nstlim = 500000,
ntwe = 100,
ntwx = 100,
ntpr = 100,
cut = 12.

Appendix 3: Anal.inp
Pocket 1 Energy Analysis
1 0 0 500 0 1
0 0.0 0.0 0.0 0.0
1 0 1 0 50 0
25.0 2.0 2.0 1.0
1 20.0 20.0 20.0 100.0 50.0 10000. 200. 200. 0.
PDB
ENERGY
MHC residues
RES -1 60
END
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Peptide residues
RES -377 385
END
END
TELL
TORSION
N CA C O
N C CA CB
O C CA CB
N CA CB CG
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Molecular Dynamics Simulations
Bring Biomolecular Structures Alive on a Computer

Shunzhou Wan, Peter V. Coveney, and Darren R. Flower

Summary

The molecular dynamics (MD) simulations play a very important role in science today. They
have been used successfully in binding free-energy calculations and rational design of drugs
and vaccines. MD simulations can help visualize and understand structures and dynamics at an
atomistic level when combined with molecular graphics programs. The molecular and atomistic
properties can be displayed on a computer in a time-dependent way, which opens a road toward
a better understanding of the relationship of structure, dynamics, and function. In this chapter,
the basics of MD are explained, together with a step-by-step description of setup and running an
MD simulation.

Key Words: molecular dynamics simulation; visualization; major histocompatibility complex

1. Introduction
Molecular dynamics (MD) is a computer simulation technique where the time

evolution of a set of interacting atoms is followed by integrating their equations
of motion. MD simulations can, in principle, provide the ultimate details
of motional phenomena, which can enhance our understanding of biological
function through the structure, dynamics, and function connection.

The MD studies in biology have emerged rapidly in recent years as an
important complement to experiment. MD simulations find three major areas
of application for the study of macromolecules of biological interest (1). First,
MD simulation is used as a means of sampling configuration space, which can
determine or refine structures with data obtained from X-ray or nuclear magnetic
resonance (NMR) experiments. Second, it is used to determine equilibrium

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
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averages of molecular properties that approach the experimentally measurable
ensemble averages. Third, it is used to examine the actual dynamics, giving
insights into the properties on different timescales for biomolecules in solvation.

The number of simulation techniques and their applications has greatly
expanded. Today in the literature, there exist many specialized techniques
for particular problems, including mixed quantum mechanical–molecular
mechanical (QM/MM) simulations that are being employed to study enzymatic
reactions in the context of the full protein (2) and massively parallel MD
simulations that mimic real-time MD of water penetration through a membrane
protein (3).

Given these many sources for the application of MD simulations, the focus
in this chapter is on providing a hand-on session of classical MD simulation of
the peptide–major histocompatibility complex (pMHC). The reader is advised
to complement these aspects with the more standard topics available elsewhere.

2. MD Approach
2.1. Theory

Structure determination is clearly a critical step toward understanding
biological function. However, protein structures solved by X-ray crystallog-
raphy are heterogeneous and inaccurate (4). In addition, protein function
requires motion. MD is the link between structure and function. To bring
biomolecular structures alive on a computer, we need to employ a few
techniques that manipulate the structure, {R}, given the potential energy,
V({R}). The CHARMM format energy function has the form (5):

V ��R�� = ∑
bonds

Kb�b−b0�
2 +∑

UB

KUB�S −S0�
2 + ∑

angles

K��� −�0�
2

+ ∑
dihedrals

K� �1+ cos �n� −�0�	+
∑

impropers

K
�
−
0�
2

+ ∑
nonbond

[(
Aij

rij

)12

−
(

Bij

rij

)6

+ qiqj

�rij

] (1)

where Kb�KUB�K��K� , and K
 are the bond, Urey–Bradley, angle, dihedral
angle, and improper dihedral angle force constants, respectively; b, S, �, �, and

 are the bond length, Urey–Bradley 1,3-distance, bond angle, dihedral angle,
and improper torsion angle, respectively, with the subscript zero representing
the equilibrium values; n is the coefficient of symmetry (n = 1, 2, 3) of the
dihedrals. The van der Waals (vdW) interaction is modeled using the Lennard-
Jones 6-12 potential that expresses the interaction energy using the atom-type
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dependent constants Aij and Bij . qi is the partial charge of atom i, � is the
effective dielectric constant for the medium, and rij is the distance between
atoms i and j.

The MD simulation method is based on Newton’s equation of motion:

F = m
d2r
dt2

(2)

where F is the force exerted on the particle, m is its mass, and d2r/dt2 is its
acceleration. The force can be expressed as the gradient of the potential energy
(Eq. 1):

F = −�V��R�� (3)

Combining Eqs. 2 and 3, the derivative of the potential energy can be related
to the acceleration as a function of time. Numerical integration of the differential
equations of motion then yields a trajectory that describes the evolution of the
system’s positions and momenta through time. From this trajectory, the average
values of properties can be determined.

2.2. Ingredients of a Molecular Simulation

To set up a macromolecular MD simulation, some basic ingredients are needed:
a description of the structure, a set of atomic coordinates, and an empirical
energy function. A description of the structure, including all atoms in the model,
their covalent connectivity, and all the energetic interactions to be calculated, is
specified in the Protein Structure File (PSF). An X-ray crystal structure or an NMR
structure from the Brookhaven Protein Databank (http://www.rcsb.org/pdb/) is
usually used as the initial structure in simulations of biomolecules. An empirical
energy function (Eq. 1) is needed to describe the energy of the system for any
configuration of the atomic coordinates. In the following simulation, atomic
charges, vdW, and stereochemical force-field parameters for the proteins are taken
from the CHARMM22 all-atom force field (5).

2.3. Computer Software

The CHARMM (6) (http://www.charmm.org/) package is a general purpose
MD simulation program. It contains a comprehensive analysis facility that
enables the user to examine both static and dynamic properties of a system. It
will be used here for preparing the initial molecular model and analyzing the
final results.
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The NAMD (7) (http://www.ks.uiuc.edu/Research/namd/) code is a highly
scalable massively parallel MD code designed for high-performance simulation
of large biomolecular systems. It shows very substantial acceleration relative
to single processor runs for a large system (>10,000 atoms). It will be used for
the heating and equilibrium, and the production runs of our system.

The VMD package (8) (http://www.ks.uiuc.edu/Research/vmd/) is a
molecular visualization program for displaying and animating large
biomolecular systems using 3D graphics. It can also be used to build a model
and analyze the results using its built-in scripting. It will be used here for
visualizing the trajectory.

The CHARMM and NAMD, which we used, are compiled with MPI on
Unix/Linux machines, although they support many other platforms. It should
be noted that there are other MD simulation programs. Although the detailed
commands may change, the general approach taken to setup and execute an
MD simulation is the same. The example presented below can be easily adapted
to other MD simulation programs. All example CHARMM and NAMD input
files can be found in Appendices.

3. MD Simulation of pMHC
In this section, we will describe in some detail the steps of building a model,

solvating, minimizing, heating and equilibrating the system, running production
simulation, and analyzing the trajectory of Tax/HLA-A2 complex using the
CHARMM and NAMD programs. It is assumed that you have the CHARMM,
NAMD, and VMD programs installed on your local machine.

3.1. Model Building

To begin an MD simulation, an initial configuration of the system must
be chosen first. The X-ray structures of the Tax/HLA-A2 complex (PDB id:
1DUZ) (9) are used as the initial structure for the simulation. The first step
is to generate the PSF, load the initial coordinates, and place the missing
hydrogen atoms. This task is controlled by executing appropriate CHARMM
commands sequentially. All the CHARMM commands are put in a file named
build.inp (see Appendix 1), and this file is directed into CHARMM by typing
the following command at the UNIX prompt:

mpirun –np 1 charmm < build.inp > build.out

The build.inp file holds the CHARMM commands for reading in the basic
chemical units, the parameters for all energy terms, the sequence information,
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and the Cartesian coordinates, for generating the PSF, and for placing the
missing atoms.

3.2. Add Water Molecules and Counterions

The pMHC system is not neutral. It is advised to put excess counterions
(Na+� into the system so that the entire model is neutral. The counterions can
be put randomly or on an optimizing position according to the electrostatic
energy. Then, explicit water molecules are added to solvate the protein. Some
water molecules are already present in the X-ray crystal structure; they are kept
in the built model (see build.inp in Appendix 1). The solvating water molecules
are usually obtained from a suitable large box of water that has been previously
equilibrated. The entire box of water is overlapped onto the protein, and those
water molecules that overlap the protein are removed. The distance between
the edges of the solvent box and the closest atom in the protein is 10 Å. The
CHARMM commands are put in setup_box.inp file, which holds the commands
for reading in the PSF file, the coordinate file, for adding counterions and water
molecules. The final model is constructed following appropriate removal of
overlapping water molecules and trim of the system to desired size. The final
model had 45,355 atoms (see Fig. 1). The setup_box.inp file is directed into
CHARMM by typing:

mpirun -np 1 charmm < setup_box.inp > setup_box.out

3.3. Minimization

Before starting an MD simulation, it is advisable to do an energy
minimization of the structure. This removes any specious high-energy contacts
that may exist. The energy minimization will be done first with the protein
heavy atoms fixed in their X-ray positions. This allows the water molecules,
the counterions, and the protein’s hydrogen atoms to adjust to the protein’s
heavy atoms. This is followed by a loop of energy minimizations with the
backbone and side-chain heavy atoms harmonically restrained at their X-ray
positions. The restraint force constants are gradually reduced after each loop.
At last, a free energy minimization is performed. All the commands are put in
minimization.inp file (Appendix 3). In this file, the topology file, the parameter
file, and the PSF are first read into CHARMM; then, a series of energy
minimizations are performed after setting respective constraints on a set of
atoms. Run the minimization.inp script file as before:

mpirun -np 1 charmm < minimization.inp > minimization.out
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Fig. 1. The peptide–major histocompatibility complex (pMHC) in a box of water.
The MHC is represented as ribbon, and Tax peptide as ball-and-stick. Water molecules
are not shown for clarity. The picture was created using VMD (8).

3.4. Heating and Equilibrium the System

Heating is the process of increasing the kinetic energy of the system up to
a desired temperature. Because MD simulations can often require a significant
amount of CPU time, the following simulations will be done using NAMD
on multiprocessors. The initial velocities are assigned randomly based on a
Maxwellian distribution at 100 K. In our example, new velocities are assigned
every 100 steps at a slightly higher temperature (temperature increment is 20 K).
This is repeated until the desired temperature (300 K) is reached.

Equilibration is the process where the kinetic energy and the potential energy
of the system evenly distribute themselves throughout the system. Once the
desired temperature is reached, the simulation continues at this temperature.
During this phase, the kinetic and potential energies are monitored. The point
of the equilibration phase is to run the simulation until both terms appear to be
stable with respect to time.

To perform the above tasks, some commands are needed: reading the coordi-
nates and PSF files, specifying the force field and nonbonded approximations,
setting constraint for all bonds involving hydrogen atoms and the internal
geometry of the water molecules, setting periodic boundary conditions, using
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temperature and pressure control, and setting time step and number of steps.
All the commands are in md0.inp file (Appendix 4). It is directed to NAMD,
which run on 32 processors here as:

mpirun -np 32 namd2 md0.inp > md0.out

The potential and kinetic energies are extracted from the md0.out. They are
shown in Fig. 2 .

3.5. Production Run

The NAMD command file md1.inp (Appendix 5) provides the commands
necessary to continue the simulation. In general, these commands are the same
as those carried out for heating and equilibrium, except that there is no velocity
reassigning during the production phase. The system is allowed to propagate
in time without any further intervention. The trajectory (md1.dcd) is collected
at this phase for further analysis. This is done by NAMD on 32 processors:

mpirun -np 32 namd2 md1.inp > md1.out
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3.6. Analysis and Visualization

An essential part of any simulation is the analysis of the trajectory, which
extracts the structural and energetic information from the production run.
The analysis aims at gaining structural and dynamical insights, predicting
meaningful statistical properties, and relating structure to function.

It is always helpful to actually see what happens during the simulation. So,
we will first use VMD to visualize the trajectory. To start VMD, type vmd
on the command line of your shell. Load the PSF file first and then md1.dcd
file into the same molecule. This will read the DCD trajectory frames and
animate it.

The energy information can be extracted from the md1.out file, as we did
above for the heating and equilibrium phase.

We will then quantify the changes in protein structures by calculating the
root-mean square (RMS) values. The RMS deviations are analyzed after least
square fitting of main chain atoms to their X-ray-defined coordinates at the
antigen-binding site. The CHARMM commands needed for this task are reading
in the topology and parameter files, the PSF, the X-ray coordinates, and the
trajectory files; aligning each frame to the X-ray structure; and calculating the
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Fig. 3. The time evolution of the root-mean square (RMS) deviations between
snapshots of the simulations and the X-ray structure. Broken line represents all heavy
atoms and solid line represents backbone atoms. Note that longer simulation is needed
to get a stable structure.
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RMS deviations for the backbone and all heavy atoms. All commands are in
rmsd-t.inp (Appendix 6) and directed to CHARMM by typing:

mpirun -np 1 charmm < rmsd-t.inp > rmsd-t.out

Figure 3 shows the time evolution of the RMS deviations of the backbone and
all heavy atoms from the X-ray structures.

There are more properties that can be obtained by analyzing a longer
trajectory. These include the conformational changes, the dynamical properties
such as time correlation functions and transport coefficients, and the energetic
properties such as binding free energy. Some of these can be related to exper-
imental measurements. We will not cover these aspects here.
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Appendix 1: build.inp for CHARMM (Section 3.1)
* build.inp: generate CHARMM PSF for pMHC (PDB id: 1DUZ);
* Using chain A (HLA), B (B2M), C (TAX) and F (water);
* Some adaption needed for PDB format to fit the CHARMM notation.
*

! read in topology (basic chemical units) and parameter files
open unit 1 card read name top_all27_prot_na.rtf
read rtf card unit 1
close unit 1

open unit 1 card read name par_all27_prot_na.prm
read para card unit 1
close unit 1

! read sequences from the PDB coordinate files;
! separate the original PDB to files for each chain;
! generate one segment for each chain;
open unit 1 card read name hla.pdb
read sequ pdb unit 1
generate hla setu

open unit 1 card read name b2m.pdb
read sequ pdb unit 1
generate b2m setu
open unit 1 card read name tax.pdb
read sequ pdb unit 1
generate tax setu

open unit 1 card read name water.pdb
read sequ pdb unit 1
generate wat noangle nodihedral

! add disulfide bonds using the patch command
patch disu hla 101 hla 164
patch disu hla 203 hla 259
patch disu b2m 26 b2m 81

! the CD1 of ILE (PDB notation) is denoted as CD in the CHARMM,
! carboxyl terminal oxygens are referred to as O and OXT in the PDB;
! they are OT1 and OT2 in CHARMM.
! rename the carboxyl terminal oxygens OT1 to O, and OT2 to OXT.
rename atom CD1 select resname ILE .and. type CD end
rename atom O select type OT1 end
rename atom OXT select type OT2 end



Immunological MD Simulations 331

! read coordinates from the PDB files
open unit 1 card read name hla.pdb
read coor pdb unit 1

open unit 1 card read name b2m.pdb
read coor pdb append unit 1

open unit 1 card read name tax.pdb
read coor pdb append unit 1

open unit 1 card read name water.pdb
read coor pdb append unit 1

! build in hydrogens if using a crystal structure
hbuild sele all end

! delete water molecules far (>=5Å) from protein
delete atom sort -

select .byres. (segid wat .AND. type oh2 .and. .not. -
((.not. (segid wat .OR. hydrogen)) .around. 5)) end

join wat renumber

! write the protein structure file (psf) and coordinate file
open write formatted unit 27 name pmhc.psf
write psf card unit 27
* PSF for pMHC (1DUZ)
*

open unit 1 card write name pmhc.crd
write coor card unit 1
* pMHC (1DUZ): Coordinate with hydrogens
*

close unit 1

stop

Appendix 2: setup_box.inp for CHARMM (Section 3.2)
* setup_box.inp: add counterions and water molecules
*

! read in topology (basic chemical units) and parameter files
open unit 1 card read name top_all27_prot_na.rtf
read rtf card unit 1
close unit 1
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open unit 1 card read name par_all27_prot_na.prm
read para card unit 1
close unit 1

! read pMHC’s psf and coordinate files
open read formatted unit 27 name pmhc.psf
read psf card unit 27
close unit 27

open unit 1 card read name pmhc.crd
read coor card unit 1
close unit 1

! add counterions to make system neutral
open unit 1 card read name na.pdb
read sequ pdb unit 1
generate na setu

open unit 1 card read name na.pdb
read coor pdb append unit 1

! some useful selection definitions
define prot sele .not. ( resname tip3 .or. resname sod ) end
define noh sele .not. hydrogen end

! orientation and translation:
! the geometric centre of selected atoms (protein) is at the origin;
! the principle geometric axis coincides with the {x,y,z} axis.
coor orien sele prot .and. noh end
coor stat sele prot .and. noh end
calc xx = ?xmax + ?xmin
calc yy = ?ymax + ?ymin
calc zz = ?zmax + ?zmin
coor tran sele all end xdir @xx ydir @yy zdir @zz fact -0.5
coor stat sele prot .and. noh end

! add water molecules
! a large water box is used with four segments
read sequence tip3 7560
gene wat1 noangle nodihe
read sequence tip3 7560
gene wat2 noangle nodihe
read sequence tip3 7560
gene wat3 noangle nodihe
read sequence tip3 7560
gene wat4 noangle nodihe
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open unit 1 card read name watbox654.crd
read coor card append unit 1

! keep all crystal water (segment name wat),
! delete other water molecules which are within 2.8Å of
! { protein + crystal water + counterion }
delete atom sort -

select .byres. ( ( resname tip3 .and. .not segid wat ) -
.and. type oh2 .and. -
( ( ( prot .or. segid wat .or. segid sod ) .and. noh ) -
.around. 2.8 ) ) end

! trim down system to desired size,
! calculate the desired size first,
! distance between the wall of the box and the closest protein is 10Å
coor stat sele prot .and. noh end
calc xxmin = ?xmin - 10
calc xxmax = ?xmax + 10
calc yymin = ?ymin - 10
calc yymax = ?ymax + 10
calc zzmin = ?zmin - 10
calc zzmax = ?zmax + 10
delete atom sort select .byres. ( ( -

prop x .lt. @xxmin .or. prop x .gt. @xxmax .or. -
prop y .lt. @yymin .or. prop y .gt. @yymax .or. -
prop z .lt. @zzmin .or. prop z .gt. @zzmax ) .and. -
resname tip3 .and. type oh2 ) end

! write the psf (CHARMM and XPLOR formats) and coordinate (crd & pdb)
open write formatted unit 27 name setup_box.psf
write psf card unit 27
* PSF for pMHC in solvation, CHARMM format
*

open write formatted unit 27 name setup_box_xplor.psf
write psf card xplor unit 27
* PSF for pMHC in solvation, XPLOR format
*

open unit 1 card write name setup_box.pdb
write coor pdb unit 1
* coordinates of pMHC in solvation, pdb format
*

open unit 1 card write name setup_box.crd
write coor card unit 1
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* coordinates of pMHC in solvation, CHARMM format
*

stop

Appendix 3: minimization.inp for CHARMM (Section 3.3)
* minimization.inp: minimization
* protein is first fixed, then harmonically restrained, and
* at last there are no any constraints.
*

! Read in Topology (basic chemical units) and Parameter files
open unit 1 card read name top_all27_prot_na.rtf
read rtf card unit 1
close unit 1

open unit 1 card read name par_all27_prot_na.prm
read para card unit 1
close unit 1

! Read pMHC’s psf and coordinate files
open read formatted unit 27 name setup_box.psf
read psf card unit 27
close unit 27

open unit 1 card read name setup_box.crd
read coor card unit 1
close unit 1

! keep a copy
coor copy comp

! some useful selection definitions
define prot sele ( .not. (resname tip3 .or. resname sod)) end
define noh sele ( .not. hydrogen ) end
define back sele ( type n .or. type ca .or. type c ) end
define side sele ( (.not. back) .and. prot .and. noh ) end

! fix the heavy atoms of protein
! relax the water molecules, counterions, and protein’s hydrogens
cons fix purge sele prot .and. noh end
minimize sd nstep 500 nprint 10 ihbfrq 0 inbfrq 10

! specify energy minimization inside command loop
! constraints on backbone and sidechain with different constants
! Reduce the constraints after each loop



Immunological MD Simulations 335

set 1 0 ! step count
set 2 100 ! step increment (no. of minimization steps each pass)
set 3 1000 ! step limit
set 4 10 ! print frequency

! initialize harmonic constraint potential.
cons harm exponent 2 force 1

! tight on backbone atoms
scalar constraint set 50. select ( prot .and. back ) end
! looser on sidechain atoms
scalar constraint set 25. select ( prot .and. side ) end

label mini

minimize sd nstep @2 nprint @4 ihbfrq 0 inbfrq 10
incr 1 by @2

! reduce the harmonic force constants
scalar constraint multiply 0.5

if 1 lt @3 goto mini ! check for step count

! remove all constraints and minimize
cons harm clear
minimize sd nstep 500 nprint 10 ihbfrq 0 inbfrq 10

! write out the coordinate file
open unit 1 card write name pmhc_min.pdb
write coor pdb unit 1
* Minimization of pMHC (1DUZ) in solvation
*

stop

Appendix 4: md0 for NAMD (Section 3.4)
# NAMD CONFIGURATION FILE FOR pMHC

# molecular system: coordinate and PSF
coordinates pmhc_min.pdb
structure setup_box_xplor.psf

# force field
paraTypeCharmm on
parameters par_all27_prot_na.prm
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exclude scaled1-4
1-4scaling 1.0

# nonbonded interaction approximations
switching on
switchdist 10
cutoff 12
pairlistdist 13.5
margin 0
stepspercycle 20
fullElectFrequency 4

# PME: long-range electrostatic interaction
pme on
pmegridsizex 96
pmegridsizey 75
pmegridsizez 72

# SHAKE: all bonds involving hydrogens are to be fixed
rigidbonds all
rigidtolerance 0.00001
rigiditerations 100

# boundary
cellBasisVector1 94.287 0.0 0.0
cellBasisVector2 0.0 75.951 0.0
cellBasisVector3 0.0 0.0 71.099

# output frequency, output name and format
outputenergies 50
outputtiming 100
outputname md0
binaryoutput yes

# temperature control
temperature 100
reassignFreq 100
reassignIncr 20
reassignHold 300
seed 31415926

# pressure control (1 atm)
useGroupPressure on
BerendsenPressure on
BerendsenPressureTarget 1.01325
BerendsenPressureCompressibility 0.0000446
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BerendsenPressureRelaxationTime 200.0
BerendsenPressureFreq 4

# protocol: timestep (2fs) and number of steps (0-10ps)
timestep 2.0
numsteps 5000

Appendix 5: md1.inp for NAMD (Section 3.5)
# NAMD CONFIGURATION FILE FOR pMHC

# molecular system: coordinate, velocities and PSF
coordinates pmhc_min.pdb
bincoordinates md0.coor
binvelocities md0.vel
structure setup_box_xplor.psf

# force field
paraTypeCharmm on
parameters par_all27_prot_na.prm
exclude scaled1-4
1-4scaling 1.0

# nonbonded interaction approximations
switching on
switchdist 10
cutoff 12
pairlistdist 13.5
margin 0
stepspercycle 20
fullElectFrequency 4

# PME: long-range electrostatic interaction
pme on
pmegridsizex 96
pmegridsizey 75
pmegridsizez 72

# SHAKE: all bonds involving hydrogens are to be fixed
rigidbonds all
rigidtolerance 0.00001
rigiditerations 100

# boundary
extendedSystem md0.xsc
wrapall on
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# output frequency, output name and formatoutputenergies 100
outputtiming 1000
outputname md1
binaryoutput yes
restartname md1_rst
restartfreq 5000
DCDfile md1.dcd
DCDfreq 500
DCDUnitCell yes

# temperature control
tcouple on
tcoupletemp 300
tcouplefile pmhc_min.pdb
tcouplecol O

# pressure control
useGroupPressure on
BerendsenPressure on
BerendsenPressureTarget 1.01325
BerendsenPressureCompressibility 0.0000446
BerendsenPressureRelaxationTime 100.0
BerendsenPressureFreq 4
useFlexibleCell yes

# protocol: timestep (2fs) and number of steps (10-30ps)
timestep 2.0
numsteps 15000
firsttimestep 5000

Appendix 6: rmsd-t.inp for CHARMM (Section 3.6)
* rmsd-t.inp: compute the time-dependence of rms deviation from
* the x-ray structure.
*

! Read in Topology (basic chemical units) and Parameter files
open unit 1 card read name top_all27_prot_na.rtf
read rtf card unit 1
close unit 1

open unit 1 card read name par_all27_prot_na.prm
read para card unit 1
close unit 1

! Read pMHC’s psf and coordinate files
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open read formatted unit 27 name setup_box.psf
read psf card unit 27
close unit 27

open unit 1 card read name setup_box.crd
read coor card unit 1
close unit 1

! keep a copy
coor copy comp

! some useful selection definitions
define noh sele .not. hydrogen end
define pro sele segid hla .or. segid b2m .or. segid tax end
define bb sele pro .and. ( type n .or. type ca .or. type c ) end

! read in trajectory
open unit 11 read unformatted name md1.dcd
traj iread 11 nread 1

! read in every frame
! align each frame to the x-ray structure using backbone atoms
! calculate the RMS deviations of backbone and all heavy atoms
set 8 0
label loop

incr 8 by 1
traj read
coor orie rms sele bb .and. pro end
coor rms sele noh .and. pro end

if 8 lt 20 goto loop

stop
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An Iterative Approach to Class II Predictions

Ronna Reuben Mallios

Summary

An iterative approach to resolving protein–peptide binding motifs is appropriate when the
length of the binding protein is variable and a variety of amino acid residues may successfully
occupy multiple positions. This chapter describes an iterative algorithm that first aligns binding
peptides of variable lengths and then extracts a quantitative motif from the resulting alignment.
Numerous examples are presented to illustrate the utility of the iterative process.

Key Words: binding-motif prediction; iterative algorithms; discriminant analysis

1. Introduction
The prediction of class II major histocompatibility complex (MHC)–peptide

binding affinity presents a double challenge. It requires both peptide alignment
and motif extraction. Although the binding groove in class I MHC molecules
is closed at one end and provides a backstop for binding peptides that are
9–10 amino acids long, the binding groove in class II MHC molecules is
open at both ends and accommodates peptides varying from 9 to 25 amino
acids long (1,2). Consequently, it is necessary to identify the segment of
the peptide that participates in the binding before binding attributes can be
ascertained.

The iterative algorithm described in this chapter is primarily designed to
identify the subsequence of amino acids that participate in binding to a given
class II MHC molecule. However, because the resulting model is instrumental
in identifying the binding region, it often effectively predicts MHC–peptide
binding as well.
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2. Methods
2.1. Iterative Algorithm Components

2.1.1. Databases and Data Sets

As their names suggest, data-driven algorithms and models are highly
dependent upon the data that serve as input. Standardized measuring techniques
and laboratory conditions are necessary to assure the integrity of a database.
Additionally, the degree to which the data span the entire sequence space
impacts the validity of the resulting model. The term data set denotes a subset
of a database that pertains to a given MHC allele. A member of a data set
consists of a peptide sequence and the affinity level associated with the peptide
and allele under consideration.

For the past decade, the two best sources for publicly available online
MHC–peptide affinity data have been MHCBN (3) at http://www.imtech.res.in/
raghava/mhcbn/ and MHCPEP (4) at http://wehih.wehi.edu.au/mhcpep/. For a
given MHC allele, both web sites provide a set of peptides with categorical
affinities of high, moderate, low, or none. Peptide sequences are reported in
standard format with uppercase letters denoting amino acids residues. It should
be noted that it is important to include nonbinding peptides as well as peptides
with positive binding affinities. The current algorithm was developed using
these databases and consequently utilizes categorical binding affinities.

More recently, AntiJen (5,6) at http://www.jenner.ac.uk/AntiJen/
antijenhomepage.htm has offered several quantitative measures of MHC–
peptide binding affinity. Additionally, the National Institute of Allergies and
Infectious Diseases (NIAID) is currently contracting the development and
maintenance of an integrated, web-based searchable database of antibody-
binding sites and antigenic MHC-binding peptides for a wide variety of
infectious agents and immune-mediated diseases (7). These databases will
be valuable tools in developing a similar iterative algorithm for continuous
binding affinities.

2.1.2. Outcome and Potential Predictor Variables

MHC–peptide binding is coded as a categorical variable according to the
number of affinity levels being considered. The standard set of potential
predictors consists of a binary-valued variable for each amino acid residue
and position of interest. Thus, if subsequences of length 9 are under consid-
eration, Y1, Y2, � � �, Y9 assume a value of 1 when there is a tyrosine present
in the indicated position, and a 0 otherwise. In the same manner, additional
positional variables can denote the presence or absence of acidic, aliphatic,
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amidic, aromatic, basic, hydroxylic, or sulfur-containing residues. Interactions
among variables are formed by multiplying them together, for example, Y1∗V2,
Y1∗ACIDIC2, or Y1∗V2∗ACIDIC3.

2.1.3. Procedures for Building Classification Models

For this application, a classification model is a mathematical tool that assigns
a binding level to a peptide given its primary sequence. There are many
computerized procedures available that extract classification models from data
sets. These procedures include artificial neural networks (8), hidden Markov
models (9), support vector machines (10), logistic regression, and discriminant
analysis (11). Discriminant analysis is the procedure utilized in this chapter to
demonstrate the iterative algorithm.

Given observations that are known to be members of m mutually exclusive
and exhaustive groups, and a set of potential predictor variables, discriminant
analysis determines classification function coefficients that classify observa-
tions into one of the m groups. The stepwise feature provides for the entry
of only significant predictors (in the sense of a stepwise multiple analysis of
covariance procedure), with the most significant entering first. As there is one
set of coefficients for each of m binding levels, if i is the number of steps
completed in the discriminant analysis, the classification function for level j is

uj = b0j +b1j�1j +b2j�2j + � � �+bij�ij� (1)

where �1j through �ij are the predictor variables selected by discriminant
analysis and b1j through bij are the corresponding coefficients. Because the
value of all predictor variables is either 0 or 1, the value of uj reduces to the sum
of the coefficients of the variables present in a subsequence plus the constant
b0j . In Eq. 1, u = −D2/2, where D quantifies the Mahalanobis distance (11)
from an observation to the center of each of the m groups. The shorter the
Mahalanobis distance is the greater the probability that the observation is a
member of a particular group.

Classification functions are converted to the probability of group membership
by the following relationship:

Pj = euj∑
i=0�m−1

eui
� (2)

where Pj is probability that a subsequence belongs to binding level j. The
predicted classification of a subsequence is determined by selecting the binding
level that is associated with the greatest Pj . For a given observation, the sum
of the Pjs will always equal 1.
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To evaluate the accuracy of a model, the actual binding level and the
predicted classification level for each observation are compared. Cross-
validation is done by a Leave-one-out analysis where each case is classified by
the functions derived from all cases other than that case.

It should be noted that there are two assumptions in discriminant function
analysis that are often violated in this application: multivariate normality
and equal covariance matrices among groups (homoscedasticity). However,
the robustness of the analysis mitigates any serious problems (11,12). This
robustness is confirmed with cross-validation.

2.1.4. Computer Software

The models described in Section 3 were produced using SPSS 12.0 for
Windows statistical software and Microsoft Excel 2000.

2.2. Iterative Algorithm

The over-arching iterative algorithm is diagrammed in Fig. 1. The first
phase builds the initial model. The iterative phase modifies the model until
the sequence alignment stabilizes. The last phase allows for further model
refinement after alignment.

BUILD NEW BINDING DATASET

BUILD NEW MODEL

NEW MODEL = CURRENT MODEL?

RENAME “NEW” MODEL “CURRENT”

FINALIZE 
MODEL 

BUILD INITIAL MODEL

YES

NO

Fig. 1. Diagram of iterative algorithm.
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2.2.1. Build Initial Model

Although initial models can be obtained from previous publications or
studies, the following method is recommended to avoid bias:

1. Select n, the length of subsequences to be considered, and identify the set of
potential predictor variables.

2. Populate the nonbinding data set with every subsequence of length n from each
nonbinding sequence and a binding level of 0. The nonbinding data set will remain
unchanged.

3. Populate the initial binding data set with every subsequence of length n from each
binding sequence and the binding level of the parent sequence.

4. For each subsequence in both data sets, determine the values of all potential predictor
variables.

5. Merge the nonbinding data set and the initial binding data set and apply discriminant
analysis with the binding level as the dependent variable.

6. Name the classification function coefficients the “current” model.

2.2.2. Iterate Until Alignment Stabilizes

1. Build new binding data set

a. For each binding sequence, using the “current” model and Eqs. 1 and 2, calculate
the probability that each subsequence belongs to the binding level assigned to
the parent sequence.

b. Select for the new binding data set, the subsequence with the maximum proba-
bility in Step “a,” along with the binding level of the parent sequence.

c. For each subsequence selected in Step “b,” determine the value of all potential
predictor variables.

Example: Consider the peptide YVKQNTLKLAT which is known to bind to
HLA-DRB1∗0101. Suppose the current model is defined by the following classi-
fication functions for a two-level prediction of nonbinding (0) and binding (1):

u0 = −2+2∗Y1+2∗V1+2∗K2+2∗Q2+2∗V2+2∗L6+2∗A8+2∗L9+2∗T9 and

u1 = −12+11∗Y1+4∗V1+5∗K2+3∗Q2+6∗V2+3∗L6+7∗A8+4∗L9+4∗T9�

Then, the probabilities of binding (P1) for the three subsequences of length 9, (a)
YVKQNTLKL, (b) VKQNTLKLA, and (c) KQNTLKLAT, are

a. u0 = −2 + 2 + 2 + 2 = 4; u1 = −12 + 11 + 6 + 4 = 9; eu0 = 54�6; eu1 = 8103;
P1 = 8103/�54�6+8103� = 0�99;

b. u0 = 4; u1 = 0; eu0 = 54�6; eu1 = 1�0; P1 = 0�02; and
c. u0 = 4; u1 = 2; eu0 = 54�6; eu1 = 7�4; P1 = 0�12.
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Because P1(YVKQNTLKL) = 0.99 is the largest of the three probabilities,
YVKQNTLKL is selected as the subsequence most likely to be responsible for
binding, and it is entered into the new binding data set. For data analysis, Y1, V2,
K3, Q4, N5, T6, L7, K8, and L9 are set to 1, whereas all other potential predictor
variables are assigned to 0.

2. Build new model: Merge the permanent nonbinding data set and the new binding data
set and apply discriminant analysis with the binding level as the dependent variable.

3. Name the classification function coefficients the “new” model.
4. When the coefficients of the “new” model equal those of the “current” model, the

alignment process has stabilized.

2.2.3. Finalize Model

At this point, the model can be utilized as is or can be refined. One method
of refinement is to employ receiver operating characteristic (ROC) analysis (13)
to establish a threshold value that separates one level of binding from another.
Another refinement collapses binding levels. Additionally, any of the alternative
classification methods identified in Section 2.1.3 can be applied.

3. Results: Modeling HLA-DRB1∗0101–Peptide Binding Affinity
Four applications of the iterative algorithm for modeling HLA-DRB1∗0101

binding are presented. These examples illustrate binary and multilevel classifi-
cation, predictor variable restriction, and postalignment refinement. In concor-
dance with the goals of vaccine design, the strategy in each case is to identify
high-affinity binders. Data sets were retrieved from MHCBN in October 2004
with four binding levels. Affinity levels were originally coded 0 through 3, respec-
tively, denoting none, low, moderate, and high.

3.1. Binary Classification

To reclassify peptides into nonbinding and binding, outcome values 1 through
3 were recoded as 1 and labeled as binding, whereas 0 remained nonbinding.
The iterative alignment procedure converged in 11 iterations with 41 predictors.
Table 1A displays the dominant standard classification function elements, those
with coefficients greater than 3. Within a column, entries are ordered by their
contribution to binding.

With two binding levels, classification is determined by which Pj (P0 or P1�
is greater than 0.5. In addition to accuracy (ACC), binary classification allows
for the following evaluation measures: sensitivity (SN), specificity (SP), positive
predictive value (PPV), and negative predictive value (NPV). Evaluation of the
standard binary converged alignment model is recorded in Table 2A. Note that
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Table 2
Evaluation of binary models: binding versus nonbinding

SN SP PPV NPV ACC

A. Standard binary alignment model 0.95 0.95 0.91 0.98 0.95
Cross-validation 0.94 0.94 0.90 0.97 0.94

B. Binary anchor alignment model 0.91 0.92 0.86 0.95 0.92
Cross-validation 0.90 0.92 0.86 0.94 0.91

C. Binary anchor postalignment model 0.91 0.93 0.87 0.95 0.92
Cross-validation 0.90 0.93 0.86 0.95 0.92

ACC, accuracy; NPV, negative predictive value; PPV, positive predictive value; SN, sensitivity;
SP, specificity.

although it is not known which subsequence is truly responsible for binding,
measures of evaluation assume that the subsequence selected for the binding data
set is the responsible subsequence.

The mean probability of binding (P1� was calculated for the selected subse-
quences of each binding level. The results were none=0.07, low=0.88, moderate
= 0.92, and high = 0.96. These values suggested that probability of binding
and strength of binding were correlated. Consequently, an ROC analysis was
performed with P1 as the test variable, the parent binding level as the state variable,
and high as the value of the state variable. The ROC analysis produced an area
under the curve (AUC) of 0.922 and indicated an optimal cutoff of 0.94. Thus,
if a threshold of 0.94 is applied to P1, a test is generated for predicting high-
affinity binders versus not high-affinity binders. Table 3 displays results of all
high-binding versus not high-binding tests devised in this chapter. Row A depicts
this binding versus nonbinding model with a 0.94 threshold on P1.

3.2. Binary Classification Determined by Anchor Positions

This binary model aligned peptides on anchor positions by restricting the
potential predictor variables to positions 1, 4, 6, and 9. The iterative procedure
converged in 15 iterations with 20 predictors. To refine the model after
alignment, discriminant analysis was applied again with potential predictors
from all positions. The classification functions for the alignment model are
summarized in Table 1B and those for the postalignment model in Table 1C.
Model evaluations in Table 2B and 2C reveal that the postalignment model
slightly improved the alignment model, but that both did not classify as well
as the original binary classification model. Thus, in this instance, focusing on
anchor positions appears detrimental rather than advantageous.
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Table 3
Evaluation of all high-binding versus not high-binding tests

Model SN SP PPV NPV ACC

A. Binding versus
nonbinding, 0.94
threshold

0.85 0.86 0.60 0.96 0.85

B. 4-Level collapsed 0.90 0.95 0.82 0.97 0.94
C. 3-Level collapsed 0.96 0.96 0.86 0.99 0.96
D. 3-Level, 0.80
threshold

0.90 0.98 0.91 0.98 0.96

ACC, accuracy; NPV, negative predictive value; PPV, positive predictive value; SN, sensitivity;
SP, specificity.

3.3. 4-Level Classification

The MHCBN peptide categorization of none, low-, moderate-, or high-affinity
binding naturally lends itself to a 4-level classification model. The iterative
procedure converged in 18 iterations with 33 predictors. The dominant classifi-
cation elements, with coefficients greater than 4, are found in Table 4. The 4-
level model correctly classifies 81% of nonbinders, 83% of low binders, 75%
of moderate binders, and 90% of high binders, for a total accuracy of 0.83. The
accuracy of cross-validation is 0.81.

The 4-level classification functions can be used to separate high binders from
non-high binders by collapsing the first three groups into one. Thus, if P0, P1,
P2, P3 are the probabilities of group membership for a given peptide, then the
peptide is classified as high binding only if P3 is the largest of the four probabilities.
Otherwise it is classified as non-high binding. Table 3B evaluates the collapsed
4-level model.

3.4. 3-Level Classification

There is justification for condensing low and moderate binders into one group.
First, the primary objective is to identify high binders. Second, nonbinders are
likely to be very different from the others. Consequently, a 3-level model of
nonbinders, low/moderate binders, and high binders was generated. For this 3-
level model, the iterative alignment procedure converged in 13 iterations with 38
predictors. The dominant classification elements, with coefficients greater than 3,
appear in Table 5. This model correctly classifies 88% of nonbinders, 89% of the
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middle group, and 96% of high binders, for a total accuracy of 0.89. The accuracy
of cross-validation is 0.87.

Similar to the 4-level model, the collapse of the lower levels produces a high-
binding versus not high-binding prediction. Table 3C evaluates the collapsed 3-
level model.

The collapsed 3-level model classifies a peptide as high binding only if P2

is larger than P0 and P1. Another strategy, similar to that used with the binary
classification model, is to classify a peptide as high binding if P2 is greater than
a given threshold, necessarily greater than 0.5. This strategy has the advantage of
increasing thePPVat theexpenseofSN,whichmaybedesirable invaccinedesign.
Table 3D illustrates the results when a threshold of 0.80 is applied to P2 from the
3-level model. A final strategy, often used in practice, is to rank subsequences by
the probability of high binding and select top-ranked peptides (14).

4. Conclusion
All of the tests illustrated in Table 3 yield very respectable results for predicting

highbindingversusnon-highbinding. Inaddition, aconsensusof theclassification
functions identifies F1, Y1, W1, I4, L4, A4, I9, and V9 as the most dominant
predictors, in agreement with other major studies (15–17). Thus, the methods
presented here have faithfully extracted information from the data (18), given
subsequences of length 9. The accuracy of the modeling process depends upon the
true length of the binding region and the reliability and completeness of the data.
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Building a Meta-Predictor for MHC
Class II-Binding Peptides

Lei Huang∗, Oleksiy Karpenko, Naveen Murugan, and Yang Dai1

Summary

Prediction of class II major histocompatibility complex (MHC)–peptide binding is a
challenging task due to variable length of binding peptides. Different computational methods
have been developed; however, each has its own strength and weakness. In order to provide
reliable prediction, it is important to design a system that enables the integration of outcomes
from various predictors. In this chapter, the procedure of building such a meta-predictor based
on Naïve Bayesian approach is introduced. The system is designed in such a way that results
obtained from any number of individual predictors can be easily incorporated. This meta-predictor
is expected to give users more confidence in the prediction.

Key Words: MHC class II binding; epitope prediction; meta-predictor; Naïve Bayesian
classifier

1. Introduction
T-cell-mediated immune responses are initiated by the activation of effector

T cells. The activation process requires the recognition of the complex formed
between an antigen peptide and a major histocompatibility complex (MHC)
protein by the T-cell receptor. The identification of peptides that bind to MHC
molecules plays a crucial role in understanding the mechanisms of both humoral

∗ This authors contributed equally.
1 Address for correspondence: Department of Bioengineering (M/C063), University of Illinois

at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA. Tel.: (312) 413-1487; Fax: (312)
413-2018; Email: yandai@uic.edu

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
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and adaptive immunity as well as developing epitope-based vaccines. Experi-
ments for measuring the binding affinities of peptides to MHC molecules are
time-consuming and expensive. It is a prohibitive task to identify potential
binding peptides from the host and pathogen proteins on a genome-wise scale.
Therefore, considerable efforts have been made on the development of compu-
tational tools for the identification of MHC-binding peptides (1,2).

Two major types of MHC molecules are involved in the peptide-binding
process. MHC class I molecules present endogenous antigens (e.g., viral
peptides or tumor antigens synthesized within the cytoplasm of a cell) to CD8+
cytotoxic T cells. MHC class II molecules, on the other hand, present exoge-
nously derived proteins (e.g., bacterial proteins or viral capsid proteins) through
antigen-presenting cells (APCs) to CD4+ helper T cells (3). Generally, antigen
peptides that bind to both MHC class I and class II molecules are approxi-
mately nine amino acid residues long. However, the peptide-binding groove of
an MHC class II molecule is open at both ends, which makes it capable of
accommodating longer peptides of 10–30 residues (4–6).

The length variability complicates the prediction of peptide–MHC class II
binding. However, analyses of the binding motif and the structure of peptide–
MHC class II complexes have suggested that a core of nine residues within a
peptide is essential for peptide–MHC binding. Computational methods for the
prediction include simple binding motifs (7,8), quantitative matrices (9), hidden
Markov models (10), artificial neural networks (11,12), and support vector
machines (13). Some of these methods require a preprocessing step to align
binding sequences with various lengths for the identification of subsequences of
the binding cores. Because each method has its own strength and weakness, it
is hard for an immunologist to select a single method from the pool of existing
predictors. Therefore, a system that produces reliable prediction through the
integration of outcomes from major prediction methods is in clear need.

In this chapter, the steps for building such a system based on the Naïve
Bayesian (14) approach are presented. The Bayesian framework has the flexi-
bility to incorporate any predictor that makes prediction from a computed score
correlated with the binding affinity of MHC class II peptides. Here, in order
to illustrate the steps of the Bayesian framework, three individual predictors,
that is, ProPred, the Gibbs sampler, and the linear programming (LP) model
are selected.

ProPred, designed by Singh and Raghava (15), applied the quantitative
matrices from 51 HLA-DR alleles for the prediction of MHC class II-binding
peptides. These matrices were generated from a pocket profile database
described by Sturniolo et al. (9) and covered the majority of human
HLA-DR specificity.
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Nielsen et al. (16) proposed an advanced motif sampler method based on the
Gibbs sampling technique, which efficiently samples the possible alignment
space of binder sequences. For each alignment, a log-odds weight matrix was
calculated for the identified binding core subsequences. This matrix serves
as the position-specific scoring matrix for the computation of a score for a
nonamer.

Motivated by a text mining model designed for building a classifier from
labeled and unlabeled examples, Murugan and Dai (17) developed an iterative
supervised learning model for the prediction of MHC class II-binding peptides.
The iterative learning model, based on LP, enables the use of nonbinder infor-
mation for the detection of the binding cores from a set of putative binding
cores and for the construction of the predictor simultaneously. The outcome of
this predictor is a position-specific weight matrix that can score amino acids at
each position of a nonamer.

2. Materials
1. A data set that includes binding and nonbinding peptides for a specific MHC class II

allele. The recommended size of binders is above 100. Any in-house peptide set can
be used. If the number of peptides is not sufficient, peptides from databases such
as AntiJen (18) and MHCBN (19) can be added for training. For some alleles, the
number of nonbinders may be extremely small. In this case, the random sequences
can be added (see Note 1).

2. Predictors that can score the binding ability for each individual peptide (see Note 2).

3. Methods
The Bayesian predictor is trained based on the prediction outcome obtained

from each individual predictor for a set of training peptides. The system is
flexible to incorporate results from any number of predictors. Suppose that the
number of predictors is m. In general, the requirement for each predictor is
the generation of a score for a given peptide sequence. This score of a peptide
is designated as the highest value among all scores that are assigned to the
overlapping 9 mer of the peptide by a predictor. A peptide is predicted as a
binder/nonbinder if this score is above/below a prescribed threshold value. The
steps for building a Bayesian predictor are as follows:

1. Prepare a training data set. Any peptide sequence with length less than nine residues
or with undetermined residues in certain positions should be discarded.

2. Reduce the redundancy in the data set. This step is to prevent overestimation of
the performance of a predictor. After the reduction, there should be no two peptide
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sequences in the set with sequence identity >90% over an alignment of length at
least nine residues.

3. Obtain a predictive score for each peptide in the training set (including binding and
nonbinding sequences) from each individual predictor. These scores form the input
set from which a Bayesian predictor can be built.

4. Determine a set of threshold values that produce distinct pairs of sensitivity and
specificity (see Note 3). This procedure should be performed for each predictor
on the training set. Upon the completion of this step, a set of threshold values for
predictor j is obtained, say �j =

(
�

j
1� · · · � �

j
tj

)
� j = 1� � � � �m, where tj is the number

of possible threshold values with the above property for predictor j.
5. Determine the best combination �∗ = (

�∗1� · · · � �∗m
)

of threshold values, where each
�∗j�j = 1� � � � �m� is the selected threshold value for predictor j. This combination
can be determined by finding the highest average area under receiver operating
characteristic curve AROC (see Note 3) value for the Bayesian predictor with a
k-fold cross-validation procedure described as follows:

a. For each combination of threshold values �1
i1
� · · · � �m

im
set up a prediction

outcome table for the (k−1)-folds of the training peptides (see Note 4), where
�

j
ij

is the ijth threshold value for predictor j� j = 1� � � � �m and ij = 1� � � � � tj .
This table is of size n×m, where n is the number of peptides in the training
folds. The outcome obtained from predictor j for a peptide is denoted by a
binary number fj � fj = 1 if the peptide is predicted as binder, fj = 0 otherwise.
Accordingly, the prediction outcome obtained from the m predictors for each
peptide will be coded by a binary string f1f2 � � � fm.

b. Build the probability table for the Bayesian predictor from the n × m table
described above. Let yi denote the label of each peptide: yi = 1 if it is a binder
and yi = −1 if it is not a binder. The probabilities for each value fj of the m

features for the binder class and the nonbinder class are computed as follows:

p�fj = 1�binder class� =
∑

i�yi=1
I�fij = 1�

total number of binders
� j = 1� � � � �m�

p�fj = 0�binder class� =
∑

i�yi=1
I�fij = 0�

total number of binders
� j = 1� � � � �m�

p�fj = 1�nonbinder class� =
∑

i�yi=−1
I�fij = 1�

total number of nonbinders
� j = 1� � � � �m� and

p�fj = 0�nonbinder class� =
∑

i�yi=−1
I�fij = 0�

total number of nonbinders
� j = 1� � � � �m�
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where I�·� = 1 if the condition in the parenthesis is true; I�·� = 0 otherwise. Note
that (i) the total numbers of binders and nonbinders are respectively those in
the (k−1) training folds; (ii) the index i in the numerator of each formula runs
through all peptides in the (k−1) training folds; and (iii) fij is the prediction by
predictor j for the 9 mer with the highest score from peptide i.

c. For each overlapping 9-mer si of a peptide x from the testing fold, compute the
ratio of probabilities

Ri = p�f = 1�si�

p�f = 0�si�
=

m∏
j=1

p�fij�binder class)

m∏
j=1

p�fij�nonbinder class)

and select the highest one as the ratio Rx of the peptide x. Here, fij is the
prediction outcome obtained from predictor j for 9-mer si. This formula is a
straightforward application of the Bayesian rule, without the inclusion of the
ratio of prior probabilities p(binder) and p(nonbinder). The influence of prior
probabilities on prediction will be implicitly considered through threshold of
ratio Ri. With a prescribed threshold �B for the Bayesian predictor, the peptide
is predicted as a binder if Rx is greater than �B, otherwise a nonbinder. Varying
the threshold values for �B, the AROC value for the current testing fold can be
calculated.

d. Repeat the above steps for the other k−1 sets of different training and testing
folds and obtain the average AROC value from the k-testing folds.

e. After obtaining the average AROC values for all possible combinations of
(�l

ii
� � � � � �m

im
), identify the best combination �∗ = ��∗l� � � � � �∗m� that corresponds

to the highest average AROC value.

6. Construct the final Bayesian predictor by using the outcome table determined
from the best combination of threshold �∗ = ��∗l� � � � � �∗m� for the entire training
peptides. That is, build the outcome table following the step 5a with threshold
�∗ = ��∗l� � � � � �∗m� and the entire training set. Then compile the probability table
as described in the above step 5b. By varying threshold values for �B, obtain the
corresponding sensitivity and specificity for the entire training set and compute an
AROC value.

The general framework of building a Bayesian predictor is summarized in
Fig. 1.

The threshold �B for the Bayesian classifier for testing has to be determined
based on the requirement for sensitivity and specificity specified by users (see
Note 5). The Bayesian predictor predicts a peptide as a binder if the highest
value among the ratios p�f = 1�si�/p�f = 0�si� for all overlapping 9-mer si

from the peptide is great than �B, otherwise predicts it as nonbinder.
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Fig. 1. Illustration of the framework for building a Bayesian predictor.



A Meta-Predictor for MHC Class II-Binding Peptides 361

Fig. 2. Comparison of the performance of the Bayesian predictor with the three
individual predictors.

For reference the performance of the Bayesian predictor built from the
three individual predictors (i) ProPred (15), (ii) Gibbs sampler (16), and (iii)
the LP predictor (17) in our illustrative example is shown in Fig. 2. The
corresponding web server can be accessed at http://array.bioengr.uic.edu/cgi-in/
mhc2srv/testing.web.pl.
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Notes
1. In our study, peptide sequences were obtained from two databases: AntiJen (18)

and MHCBN (19). Considering the size of training set, nine alleles were selected:
HLA-DRB1∗0101, HLA-DRB1∗0301, HLA-DRB1∗0401, HLA-DRB1∗0701, HLA-
DRB1∗0802, HLA-DRB1∗1101, HLA-DRB1∗1302, HLA-DRB1∗1501, and
HLA-DRB5∗0101. Random peptide sequences can be randomly chosen from Swiss-
Prot or Entrez database.

2. Each individual predictor may be a position-specific scoring matrix, which is of
size 20 by 9. The score of a 9-mer is defined as

∑9
l=1 s�l�, where s�l� is the value in
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the lth column of the matrix corresponding to the residue appeared at position l of
the 9 mer. The score may not be the actual binding affinity of the 9 mer; however,
the magnitude correlates the strength of the binding.

3. The AROC value is the area under receiver operating characteristic curve (20),
which is determined from a set of values of (1-specificity, sensitivity) derived from
different values of threshold of a predictor for a set of binder and nonbinder peptides.
The sensitivity and specificity are defined as TP/(TP + FN) and TN/(TN + FP),
respectively, where TP and FN are the respective numbers of predicted binders and
nonbinders which are true binders; TN and FP are respective numbers of predicted
nonbinders and binders which are true nonbinders. An AROC value close to 1 is
desirable for a predictor. A random predictor has an AROC value of 0.

4. In the k-fold cross-validation, the ratio between the number of binders and the
number of nonbinders in all k-folds should be approximately equal. This is important
for training.

5. The testing threshold �B for the Bayesian predictor is specified by the requirement
of the users. In general, the recommended value for �B is that the sensitivity and
specificity of the predictor are approximately equal. However, it is also possible
to select a value for �B at which the sensitivity is higher than the specificity; or
conversely, �B at which the specificity is higher than the sensitivity. The values for
�B and the corresponding values of the sensitivity and specificity can be obtained
for the Bayesian predictor. These values indicate the quality that the predictor may
have when the prediction is made for new peptide sequences. In our illustrative
example, if one wishes the final predictor to target sensitivity at a level of 0.7, then
the proper choice for �B should be 1.188 (see Table 1).

Table 1
Threshold values for the Bayesian predictor and the
corresponding sensitivity and specificity for
HLA-DRB1∗0401 allele

Threshold Sensitivity Specificity

1.602 0�000 1�000
1.601 0�554 0�876
1.188 0�710 0�817
0.849 0�790 0�774
0.630 0�842 0�651
0.563 0�878 0�505
0.402 0�918 0�339
0.299 1�000 0�000
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Nonlinear Predictive Modeling of MHC Class II–Peptide
Binding Using Bayesian Neural Networks

David A. Winkler∗ and Frank R. Burden

Summary

Methods for predicting the binding affinity of peptides to the MHC have become more
sophisticated in the past 5–10 years. It is possible to use computational quantitative structure-
activity methods to build models of peptide affinity that are truly predictive. Two of the most
useful methods for building models are Bayesian regularized neural networks for continuous or
discrete (categorical) data and support vector machines (SVMs) for discrete data. We illustrate
the application of Bayesian regularized neural networks to modeling MHC class II-binding
affinity of peptides. Training data comprised sequences and binding data for nonamer (nine
amino acid) peptides. Peptides were characterized by mathematical representations of several
types. Independent test data comprised sequences and binding data for peptides of length ≤ 25.
We also internally validated the models by using 30% of the data in an internal test set. We
obtained robust models, with near-identical statistics for multiple training runs. We determined
how predictive our models were using statistical tests and area under the receiver operating
characteristic (ROC) graphs �AROC�. Some mathematical representations of the peptides were
more efficient than others and were able to generalize to unknown peptides outside of the training
space. Bayesian neural networks are robust, efficient “universal approximators” that are well
able to tackle the difficult problem of correctly predicting the MHC class II-binding activities of
a majority of the test set peptides.

Key Words: Bayesian neural networks; quantitative structure-activity relationships; T-cell
epitope; major histocompatibility complex; peptide binding

∗ Address for correspondence: Centre for Complexity in Drug Discovery, CSIRO Molecular
and Health Technologies, Clayton, Australia. Tel.: +61-3-9545-2477; Fax: +61-3-9545-2446;
Email: dave.winkler@csiro.au

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
Edited by: D. R. Flower © Humana Press Inc., Totowa, NJ

365



366 Winkler and Burden

1. Introduction
Major histocompatibility complex (MHC) proteins are cell-surface glyco-

proteins present on antigen-presenting cells. They recognize and bind peptides
identified by CD4+ T cells and result in activation of the T cell, thus playing a
crucial role in initiation, enhancement, and suppression of immune responses.
Two classes of MHC molecules exist. Those that bind peptides derived by
degradation of intracellular proteins are labeled class I, and those binding
peptides derived from extracellular protein degradation are class II. MHC class
II-binding peptides, which induce and recall T-cell responses, are called T-cell
epitopes.

1.1. Summary of MHC Modeling Research

Identification of T-cell epitopes can be useful for developing disease
therapies (e.g., malaria). A relatively small number of research groups have
tackled the difficult problem of generating predictive Quantitative Structure-
Activity Relationship (QSAR) models for peptide binding to the MHC class II-
binding peptides. Buus (1) identified privileged binding motifs binding peptides
and used these to help build QSAR models of human immune reactivities.
Doytchinova and Flower (2) employed the 3D QSAR (those that consider the
topographical rather than topological properties of the binding peptides) to
model the affinity of peptides for the class I MHC HLA-AA∗0201 allele. More
recently, these workers used an “additive” linear regression method to predict
MHC protein–peptide binding (3). They assumed that binding affinity was an
additive function of the contributions of amino acids in each position of the
peptide, plus some linear interactions between amino acids and their neighbors
(see Note 1). Logean, Sette, and Rognen (4) derived a customized free energy
scoring function to predict the binding affinity of 26 peptides to the class I
MHC HLA-B∗2705 protein. Their method ranked the binding affinities and
predicted their binding energies within 3–4 kJ/mol. Brusic et al. (5) employed
backpropagation neural networks to generate a nonlinear model of HLA-A11
binding by nine amino acid peptides. Comparisons between neural networks
and alternative QSAR modeling methods for MHC–peptide binding have been
reported by Gulukota and coworkers (6). De Hann et al. (7) elucidated the
relative individual contributions of side-chain hydrogen bonding and flexi-
bility to MHC-binding affinity of peptides using peptoid surrogates.The very
efficient support vector machine (SVM) method by Bhasin and Raghava (8)
was used to classify a relatively large set of peptides binding to HLA-DRB1∗

0401 allele.
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1.2. Need for Nonlinear, Robust Methods of Modeling
Peptide Binding to MHC

MHC class II–peptide recognition is known to be a more complex process
to model than class I recognition. The theoretical and experimental studies to
date have suggested strongly that the interaction of peptides with the MHC is
nonlinear and complex. Interactions between amino acids as well as between
the peptides and the protein play an important role in modulating binding
affinity. Buus (1) reviewed a number of general approaches for MHC-binding
affinity prediction and advocated strongly for the application of neural networks
because they were better suited to recognizing complicated peptide patterns than
binding motifs and other methods. In addition, it is clear that QSAR methods
that rely on explicit determination of interaction terms are problematic. They
require a subjective input from the modeler concerning which interactions are
important. More importantly, the number of interactions that must be included
in the model increases dramatically, potentially causing problems with deriving
statically valid models that are not overfitted. For example, Gulukota et al. (6)
encountered this problem when modeling peptide binding to the MHC class I
HLA-A2.1 allele. The neural network architecture they used had 180 descriptors
and 50 hidden layer neurodes resulting in used-over 9000 weights. As their
training set was small (∼200–300), and the number of adjustable weights high,
the probability of overfitting is high also. Doytchinova, Blythe, and Flower’s
work provides another example where overfitting posed a problem. In their
model, they included all neighbor linear interaction terms. As the number of
possible terms and cross-terms was very large (6,180), they needed to employ
a linear variable reduction method (partial least squares) to build a linear model
of the peptide binding that avoided overfitting.

We have developed a robust, nonlinear, parsimonious, structure-property
mapping methodology able to model relationships between chemical structure
and a wide variety of properties. Using these methods, we have built predictive
models of drug target activity (9), ADME properties (10), toxicity (11), and
phase II metabolism (12), amongst other properties. We describe how this
method can be applied to build predictive models of peptide binding to the
MHC.

1.3. Advantages of Bayesian Regularized Neural Networks

Our methodology employs Bayesian regularized neural networks and several
types of molecular descriptors to build predictive models of peptide binding
(13). Applying a Bayesian framework to a neural network provides a number
of advantages over traditional backpropagation neural networks used in QSAR
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studies, including those modeling peptide binding to the MHC. Neural nets
are “universal approximators” able to model continuous, complex, nonlinear
response surfaces of arbitrary complexity, given sufficient training data.
However, they can overfit data, be overtrained (compromising their ability to
predict), require partitioning of sometimes scarce data into validation sets to
determine when to stop training, and selecting the correct network architecture
is difficult. Bayesian neural nets on the other hand are robust, difficult to
overtrain, minimize the risk of overfitting, are tolerant of noisy or missing
data, automatically find the least complex model that explains the data, and
can automatically optimize their architecture (14).

1.4. Bayes’ Theorem

Bayes’ theorem employs conditional probability to make predictions. Bayes’
theorem, sometimes called the inverse probability law, is an example of a
powerful statistical inference method. Bayes’ theorem is derived fairly simply.
If two events are independent of each other, the probability of A and B occurring
is the product of the individual probabilities, P(A and B) = P(A)P(B). The
conditional probability (probability of B given A) is written as P(B�A). It is
defined as

P�B�A� = P(A and B)/P(A) (1)

This can be rearranged to P(A and B) = P(A)P(B�A).
Similarly

P�A�B� = P(A and B)/P(B) (2)

Combining Eqs. 1 and 2 gives Bayes’ theorem:

P�A�B� = P�B�A�P�A�/P�B�

We can use Bayes’ theorem to find the conditional probability of event A
given the conditional probability of event B and the independent probabilities
of events A and B. Not everyone is comfortable with Bayes’ theorem. Some
find it difficult to accept that instead of using probability to predict the future,
probability is used to make inferences about the past. Bayes’ theorem can be
used to optimally control regularization and make artificial neural networks
(ANNs) more robust, parsimonious, and interpretable.
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1.5. Bayesian Regularization of Neural Networks

Details of Bayesian regularization applied to backpropagation neural
networks may be found in previous publications (13,14); so, only a brief
summary is given here.

Regression can exhibit instability for some data sets, and regularization is
used to improve the modeling robustness. For neural network-based regression,
the aim is to modify the weights in the neural network to minimize the cost
function S(w).

S �w� =
ND∑
i=1

�yi −f �xi��
2

It is difficult to find the optimum complexity for a regression model that
balances the tendency for bias [model is too simple to capture the underlying
(nonlinear) relationship] and variance (model is overly complex and explains
the noise as well as the underlying relationship). To control this problem and
minimize the risk of an overly complex model, the simple device of adding an
extra regularization term � (a weight penalty) to the cost function regularizes
the solution. Regularization is used in many modeling methods such as ridge
regression.

The cost function, S(w), is subsequently minimized with respect to the
weights.

S �w� =
ND∑
i=1

�yi −f �xi��
2 +�

Np∑
j=1

w2
j

This equation can be slightly rewritten in terms of hyperparameters � and �
instead of 	.

S�w� = 

ND∑
i=1

�yi −f �xi��
2 +�

NW∑
j=1

w2
j

where NW is the number of weights. Given initial values of the hyperparam-
eters, � and �, the cost function, S(w), is minimized with respect to the weights
w. A re-estimate of � and � is made by maximizing the Bayesian evidence for
the model.

P ���
�D� = P �D���
�P ���
�

P �D�
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Nabney (15) showed that only the evidence, P�D���
�, needs to be
maximized, and that the priors P�D� and P���
� can be ignored. It can be
shown (16) that the log of the evidence for � and � can be written as

log P �D���
� = −�EMP
W −
EMP

D − 1
2

ln ��C��− NW

2
ln �− ND

2
ln 
− k

2
log 2�

which is maximized with respect to � and � (NW is the number of weights, and
ND is the number of data points).

Two optimizations are carried out: minimization with respect to the weights
and maximization with respect to � and � until self-consistency is achieved.
The new values of � and � are re-evaluated using

� = �/2EW �


 = �ND −��/2ED� and

� =
NW∑
i=1

�i

�i +�
= NP −� trace

(
C−1

)



� is the effective number of parameters necessary for the model.
Applying a Bayesian framework to the neural net results in a probability

distribution of weights, not a single set of weights, allowing error bars to be
calculated for predictions.

2. Materials
We outline typical steps involved in building a Bayesian regularized neural

network model of epitope binding to the MHC class II. We have published
a complete descriptions of the use of Bayesian neural network methods to
build QSAR models explaining MHC class II-binding activity of peptides to
two HLA protein alleles, HLA-DRB1∗0101 and HLA-DRB1∗0301 (17). This
specific example is used to illustrate the methods. The primary steps are:

1. Collect a set of peptides of known sequences and binding affinities. The data set
should be as large and diverse as possible (see Note 2). The peptides should have the
recognition motif identified. For example, we employed a nine amino acid peptide-
binding data from the MHCPEP database (18). We used peptide-binding data for two
alleles, the HLA-DRB1∗0101 (data set 101; 1,408 peptides) and HLA-DRB1∗0301
(data set 301; 349 peptides), to build binding models for each allele.

2. Partition the data set into a training set and test set. The partitioning can be random
or based on a clustering method such as k-nearest neighbors (kNN). The proportions
allocated to the training and test sets are typically 80 : 20, although in our example
we used 70 : 30.
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3. If the binding affinities to the MHC allele are continuous variables, they are usually
converted to log values. If they are discrete or categorical values, they can be used
without transformation if they correspond approximately to log affinity ranges. For
example, categorical or discrete values may be 0 if the peptide does not bind and 1
if they do. They may also be integers chosen to represent no binding, weak binding,
moderate binding, and strong binding (see, however, Note 3). In our example, we used
an activity class of 1 = nil-binding activity (class N), 5 = low-binding activity (class
L), 7 = moderate-binding activity (class M), and 9 = high-binding activity (class H).

4. The amino acids corresponding to each position in the sequence are converted into
mathematical representations. This can be done in many ways (see Notes 4 and 5).
Common types of representations (also known as descriptors) include a binary vector
of length 20 which contains all zeros except for the position corresponding to the
amino acid at that position in the sequence. It is also common to describe amino acids
using a string of values that correspond to physicochemical properties of the amino
acids (e.g., taken from the amino acid descriptor database) or related representations
known as z descriptors (19). This provides a matrix of values used as input to
the neural network. In our example, we used two types of peptide mathematical
representation: binary vectors (9×20 = 180 descriptors for each peptide); property
descriptors based on seven physical properties of the 20 naturally occurring amino
acids (9 × 7 = 63 property descriptors for each peptide). The property descriptors
for the 20 amino acids are summarized in Table 1.

3. Methods
The peptide classification problem is of substantially different character

to the type of modeling to which Bayesian neural nets have been applied
previously. However, results show that the method is capable of producing
good, predictive models of MHC–peptide binding, due to its ability to deal
with nonlinear response surfaces and interactions between components.

1. There Bayesian neural network has been implemented as a module (Mol.SAR) in a
commercial software package, Know It All, distributed by the Bio-RAD Corporation
(see http://www.knowitall.com). Information is available in the book by Nabney
(15), which allows these neural networks to be implemented in a high-level language
such as matlab. There is also a lot of useful information on implementing Bayesian
regularized neural networks in the papers by Mackay (20).

2. Once the algorithm is implemented, the neural network architecture needs to be
chosen. Neural networks typically consist of three layers: an input layer where
the mathematical descriptions of the peptides are applied; the hidden layer that
does the processing; the output layer, where the model makes its prediction and
the error is derived and propagated back through the network. The mathematical
representations of the amino acid sequence of the peptide are presented to the
input layer. This layer is connected to the central hidden layer, which in turn is
connected to the output layer, typically consisting of a single neurode. The neurodes
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in one layer are usually fully connected to the neurodes of the next layer. The
number of neurodes in the network determines the number of weights (number of
fitted parameters in the model). In typical backpropagation neural networks, the
architecture is commonly chosen so that the number of weights is approximately
half the number of sequences in the training set. This avoids overfitting, which
becomes more likely as the number of training sequences and number of weights
approach each other. Bayesian neural networks are parsimonious, and the effective
number of weights in the model is usually less than the number of weights, and
so, overfitting is avoided. In our two-allele example, the number of neurodes in the
hidden layer was one or two.

3. Other parameters of the Bayesian neural network must also be defined, typically
the nature of the transfer function inside each neurode. Input neurodes usually
contain linear transfer functions, hidden layer neurodes contain sigmoidal transfer
functions, and output neurodes contain linear transfer functions for continuous data
and sigmoidal transfer functions for discrete or categorical data. In our example,
we employed a linear transfer function in a single output neurode.

4. Although Bayesian regularized neural networks are robust and generally train to
almost identical models, it is possible for the training to locate a local minimum in
the response surface. Training the network five times, starting from random initial
weights, is usually sufficient to obtain an optimum model.

5. Training is carried out by presenting the mathematical descriptions of each peptide
in turn to the input neurodes and using the network to determine the predicted
biological response (e.g., log binding affinity or activity category). The predicted
response is compared with the known (experimentally measured) response, gener-
ating an error (difference between the predicted and measured response). This error
is propagated back through the network to adjust the weights. This is done many
times for all sequences in the training set until a maximum in the evidence has been
achieved, at which time training stops.

6. The residual error in predicting the biological response of the model is used to
generate statistics for the model: the square of the correlation coefficient between
the predicted and measured training set data [r2 (train)]; the root mean square
(RMS) error in the model (RMS deviation between predicted and measured response
variables); and the standard error of estimation (SEE), which is essentially the RMS
weighted by the number of parameters in the model. For discrete data, contingency
tables and AROC are often used as the primary yardsticks of performance (21). An
AROC value of 1 indicates a perfect model, and a value of 0.5 denotes a model no
better than chance. The AROC measure removes biases due to differing numbers
of binding and nonbinding peptides, and biases due to arbitrary defined decision
thresholds (22). This measure is also not overly affected by the presence of a small
number of outliers, some of which may result from classification ambiguities near
the decision boundaries.

7. The biological response variables for the test set are then predicted by the model.
This generates an analogous set of statistics to those of the training set: the square
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of the correlation coefficient between the predicted and measured test set data [r2

(test)]; the RMS error in the model (RMS deviation between predicted and measured
test set response variables); and the standard error of prediction (SEP) for the test
set. This gives a good indication of the prediction efficiency of the model for data
not used to train the model.

8. Sometimes another independent test set is available that further assesses the ability
of the model to generalize outside of the sequence space of the training set. In our
example, we employed two independent external test sets (containing 30 and 343
peptides, respectively) for each of the two-allele models. These test set peptides
consisted of sequences of length up to 25 amino acids (see Note 6). None of the
nonamer motifs in the external test sets appeared in the training sets. For this
example, the external test set compounds were classified into activity classes in a
similar way to the training set data. Given the training set size was ∼103 peptides
and the number of possible peptides of nine amino acids is ∼1011, this is a stringent
test of the predictive power of any peptide QSAR model (see Note 2). Our models
were able to usefully predict the classifications of peptides not used in the training
and internal test set procedures. As the nonamer motifs used in training do not
appear in any of the external test sets, we have indication of the ability of models
to extrapolate into unknown sequence space.

9. The model is then used to predict the biological response variables of additional
real or virtual peptide sequences and may have considerable value in designing
peptides with specific levels of activity or understanding the basis for the activity.
Truth tables are also a useful, compact way to summarize how well QSAR models
of peptide binding to MHC alleles perform.

These models are able to make useful predictions of binding activity in a
relatively large region of “peptide space,” even when the sequences being predicted
have not appeared in the training sets for the models. Models derived by these
methods would be very useful in rapidly developing T-cell epitopes without the
need to screen large libraries of peptides.

Notes
1. We make the assumption that peptide side chains bind independently. Gulukota

et al. (6) proposed that the degree to which this assumption is true depends on the
level of detail at which prediction is attempted. For binary classification (binding
versus nonbinding), they found that the assumption appeared to be justified, but
as the number of affinity classes increases this assumption will be less valid. One
advantage of neural networks is that they can accommodate cross-terms between
descriptors, achieving some degree of relaxation of the strict independent binding
assumption.

2. Any realistic training set constitutes a very small selection of “peptide space”
(1 in 108 in our example). Consequently, the diversity of the training set can have a
major influence on the performance of predictive models derived from it. The few
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examples of highly active peptides in the external test set of our example that are
predicted to have no binding attest to these limitations in training set diversity.

3. It is clear that defining boundaries between classes are not sharp. The use of crisp
sets to classify what is essentially continuous data results in ambiguities in class
membership because some data lie close to the decision boundaries. This applies to
both the training and test sets and results in some misclassification.

4. Clearly different representations of peptides will produce models with varying
abilities to generalize well. Our results with the property-based descriptors show
that it is possible to obtain models that generalize well using reduced descriptor
sets chosen to capture peptide properties rather than simply indicate the presence
or absence of a given amino acid at a certain position. The observation that models
using these descriptors sometimes required more complex neural networks archi-
tectures suggests they require a more flexible modeling method to take into account
a larger contribution from cross-terms or nonlinearity. Property-based descriptors
may generalize better in “peptide space” than other models that learn the associ-
ations between motifs and activity. Limitations of descriptors in capturing all of
the relevant properties (some of which will clearly depend on three-dimension
structures adopted by the nonamer motifs) will cause misclassifications.

5. The quality of models depends on the efficacy and relevance of descriptors used.
It is clear that the types of descriptors we used are relatively simple. The binary
descriptors do no more than to identify each amino acid. The property-based
descriptors attempt to incorporate molecular properties into the description. There
are many ways amino acids could be described and some of these may produce
better models. However, our work suggests that using a robust, model-free, nonlinear
method to build models relating descriptors to activity can be surprisingly successful,
even with relatively simple descriptors. Development of more efficient descriptors
is an active area of research.

6. Peptides that are longer than nine residues used in building the models were
dealt with by the following method. Peptide-binding affinity was predicted by
scoring all possible overlapping nonamers in the peptide and choosing the one with
highest affinity. In our example, it was clear that the same active nonamer motifs
were occurring in different peptides with different activities. Consequently, the
assumption that the activity of a nonamer motif was invariant with respect to the rest
of the peptide in which it is embedded is not always true, although in the majority
of cases it is approximately true. This would result in some misclassification.
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TAPPred
Prediction of TAP-Binding Peptides in Antigens

Manoj Bhasin, Sneh Lata, and G. P. S. Raghava

Summary

The transporter associated with antigen processing (TAP) plays a crucial role in the transport
of the peptide fragments of the proteolysed antigenic or self-altered proteins to the endoplasmic
reticulum where the association between these peptides and the major histocompatibility complex
(MHC) class I molecules takes place. Therefore, prediction of TAP-binding peptides is highly
helpful in identifying the MHC class I-restricted T-cell epitopes and hence in the subunit vaccine
designing. In this chapter, we describe a support vector machine (SVM)-based method TAPPred
that allows users to predict TAP-binding affinity of peptides over web. The server allows user to
predict TAP binders using a simple SVM model or cascade SVM model. The server also allows
user to customize the display/output. It is freely available for academicians and noncommercial
organization at the address http://www.imtech.res.in/raghava/tappred.

Key Words: TAP; MHC class I; T-cell epitopes; subunit vaccine; SVM; cascade SVM

1. Introduction
The processing of an endogenous antigen involves intracellular processes

such as production of peptide fragments by proteasome and transport of peptides
to endoplasmic reticulum (ER) through transporter associated with antigen
processing (TAP) (1). The understanding of these processes can help in filtering
T-cell epitopes and reducing false-positive results. The binding of peptide to
TAP is crucial for its translocation from cytoplasm to ER. Therefore, under-
standing about the binding of peptides to TAP transporter can play a vital
role in improving the prediction accuracy of major histocompatibility complex
(MHC) class I-restricted peptides.

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
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TAP is a main channel for the transport of the antigenic fragments/peptides
from cytosol to ER, where they bind to MHC molecules (2). This is a
heterodimeric transporter belonging to the family of ABC transporters that
uses the energy provided by ATP to translocate the peptides across the
membrane (3–4). A TAP transporter can translocate peptides of 8–40 amino
acids, with preference for peptides of length 8–11 amino acids (5–6). Beside
length preference, the nature of peptides also influences the peptide selec-
tivity. Because of extensive polymorphism in TAP2 subunit of rat transporter,
distinct set of peptides bind and are translocated by TAP transporter with
varying efficiency (7). The understanding of selectivity and specificity of TAP
may contribute significantly in prediction of the MHC class I-restricted T-cell
epitopes. Therefore, prediction of TAP-binding peptides is crucial in identifying
the MHC class I-restricted T-cell epitopes and hence subunit vaccine designing.
Only limited algorithms are developed till now to explore TAP-binding and
translocation efficiency of peptides due to the lesser amount of data (8–9). The
JenPep is the first publicly available compilation having ∼400 TAP-binding
peptides (10). The TAP-binding peptides are also included in version 3.1 of
MHCBN (11). This chapter will provide an overview of the bioinformatics tool
TAPPred developed for prediction of TAP-binding affinity and translocation
efficiency of the peptide.

2. Materials
TAPPred is a user-friendly web server developed and launched on SUN

server 420R under Solaris environment. Support vector machine (SVM)
was implemented using the freely downloadable software, SVM_light. The
web server was launched using public domain software package Apache.
All web pages are written in hypertext markup language (HTML), and
CGI scripts are written in PERL and JavaScript. ReadSeq (developed by
Dr Don Gilbert) has been integrated in the server, which allows user to
submit their sequence in any standard formats. This server is accessible from
http://www.imtech.res.in/raghava/tappred/ or http://www.imtech.ac.in/raghava/
tappred/. In addition, MHC2Pred has been mirrored at University of Arkansas
for Medical Sciences, Little Rock, USA on SGI origin server under IRIX
environment (http://bioinformatics.uams.edu/raghava/tappred/).

3. Method
The server TAPPred is freely available for academicians and noncommercial

organization. Home page (Fig. 1) of the server has a menu list at the top, which
has the following menu options:
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Fig. 1. A snapshot of home page of TAPPred server.

1. Home: Directs to the home page of the server. The home page itself is the submission
form in this server.

2. Help: Provides step-by-step guidance to use the web server.
3. Information: This option is linked to the page that provides the detailed information

about the TAP transport and the stepwise algorithm of the method.
4. Links: This link leads to a page having the links of relevant databases, prediction

methods, and commercial epitope prediction methods.
5. Team: Directs to page providing the address and e-mail ID of the persons involved

in developing the method.
6. Contact: By clicking this link one can access the address and e-mail ID of the

person to be contacted in case of a query.
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3.1. Instructions to Use the Server

The home page itself is the submission form of the server. A sequence
submission form is a web interface wherein users can paste their query
sequence, select among the choices provided, parameters of their choice, and
submit it to the server that returns the result of this query. The fields that a
user is required to fill in the submission form are as follows:

1. Name of antigenic sequence (optional): The name of sequence may have letters and
number with the “-” or “_.” Entry of all other characters would flash a warning. The
sequence is assigned a default name “TAP1,” if the field is left blank. It may be a
problem with ä, ö, ü, or an empty space within the name of the sequence, which is
not allowed for reasons of security. Also most of the special (i.e., nonalphabetical
or nonnumerical) characters are not allowed.

2. Antigenic sequence: Protein sequence in single-letter amino acid code can be pasted
in this field or can be uploaded from a local sequence file, in any of the standard
formats. All the nonstandard characters such as �∗&∧%$@#!��_+ ∼=�′ "�<>?�\��
are ignored from the sequence. The minimum length of the submitted sequence
should be nine; otherwise the server will show a warning message. A warning is
also displayed if input from both or none of the sequences is detected.

3. Format of antigenic sequence: The server accepts both formatted and unformatted
raw antigenic sequences. The server uses ReadSeq routine to parse the input. The
user has to choose whether the sequence uploaded or pasted is plain or formatted
before running prediction. The results of the prediction will be wrong if the format
chosen is wrong.

4. Prediction approaches: The method predicts the binding affinity of peptides for
TAP transporter. The server provides two options to predict the binding affinity of
peptide on the basis of SVM:

a. Simple SVM: In this the prediction is based on the sequential information of
the peptides. The prediction by simple SVM is quick.

b. Cascade SVM: In case of cascade SVM, the prediction is based on sequential
and features of the amino acids. The prediction is done at two levels. In first
level, the preliminary results are obtained by combining features of amino acids
with sequential information. In second level, results of the first level are further
filtered. The prediction by cascade SVM is slower, but it is more reliable as
compared to simple SVM. User has to select a single approach of prediction
in any one run of prediction. A warning will be displayed if none or both
approaches of prediction were selected.

5. Run prediction: “Run Prediction” button has to be clicked in order to run the
prediction method (see Note 1).
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Fig. 2. Header of result display providing detailed information.

Fig. 3. Result display in tabular format.

6. Result display: The result will be displayed in user-friendly format. The user can
choose the type of peptides to be displayed in the result. The display, in a tabular
form, provides four options.

a. All peptides (indiscriminate of binding affinity)
b. High-affinity binders only
c. Intermediate-affinity binders only
d. Low-affinity binders

The user can select only output display one at a time. The results of each
prediction will display firstly an header, which will provide information about
the length of peptide sequence, nonamers obtained from that sequence, and
date of prediction as shown in Fig. 2.

The results will be displayed in two different formats. First format will show
Fig. 3.
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at http://www.imtech.res.in/errors/noauth.html. They need to fill up a registration
form if they agree to the terms and conditions stated in the form. The user name
and password is then sent by e-mail to the users.
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Prediction Methods for B-cell Epitopes

Sudipto Saha and Gajendra P. S. Raghava

Summary

In this chapter, two prediction servers of linear B-cell epiotpes have been described;
(i) BcePred, based on physico-chemical properties that include hydrophilicity, flexi-
bility/mobility, accessibility, polarity, exposed surface, turns, and antigenicity and ii) ABCpred,
based on recurrent neural network. Both of the servers assist in locating linear epitope regions
in a protein.

Key Words: B-cell epitope; linear epitope; physico-chemical properties; flexibility;
hydrophilicity; surface accessibility; turns; recurrent neural network; vaccine

1. Introduction
A crucial step in designing of peptide vaccines involves the identification

of B-cell and T-cell epitopes. The experimental scanning of B-cell epitope
active regions requires the synthesis of overlapping peptides, which span the
entire sequence of a protein antigen. This is costly and labor-intense task.
In silico techniques are the best alternative to find out which regions of a
protein out of thousands possible candidates are most likely to evoke immune
response. Most of the existing B-cell epitope prediction methods are based on
physico-chemical properties of amino acids. Based on these scales, a web server
BcePred (www.imtech.res.in/raghava/bcepred/) was developed to predict B-cell
epitope regions in an antigen sequence (1). BcePred can predict continuous
B-cell epitopes, and physico-chemical scales used were hydrophilicity (2),
flexibility/mobility (3), accessibility (4), polarity (5), exposed surface (6), turns
(7), and antigenicity (8). Quantification of these properties is determined by
assigning a value to each of the 20 natural amino acids. Users can select
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any physico-chemical properties or combination of two or more properties for
epitopes prediction. It presents the results in graphical and tabular frame. In
case of graphical frame, this server plots the residue properties along protein
backbone, which assist the users in rapid visualization of B-cell epitope on
protein. The peak of the amino acid residue segment above the threshold value
(default is 2.38 in combined approach) is considered as predicted B-cell epitope.
The tabular output is in the form of a table, which will give the normalized
score of the selected properties with the corresponding amino acid residue
of a protein along with the maximum, minimum and averages values of the
combined methods, selected. Blythe and Flower (9) examined 484 amino acid
propensity scales in prediction of B-cell epitopes and found that even the best
set of scales and parameters performed only marginally batter than random.

ABCpred server (http://www.imtech.res.in/raghava/abcpred/) was developed
for predicting continuous B-cell epitopes based on machine learning techniques.
ABCpred has been trained on B-cell epitopes obtained from Bcipep database
(10). This server can predict continuous (linear) B-cell epitopes. Users can
select window length of 10, 12, 14, 16, and 20 as predicted epitope length. It
presents the results in graphical and tabular frame. In case of graphical frame,
this server plots the epitopes in blue color along protein backbone (black color),
which assist the users in rapid visulaziation of B-cell epitope on protein. The
tabular output is in the form of a table, which will provide the aminoacids
length from N-terminal to C-terminal in a protein predicted by the server.

2. Materials and Methods
2.1. Usage of B-Cell Epitope Prediction Servers

The users are required to fill a request form available at
http://www.imtech.res.in/errors/noauth.html for using web servers developed
by raghava’s group (http://www.imtech.res.in/raghava). The user name (e-mail
ID) and password are provided through e-mail. The old users can directly access
the database by providing the user name and password.

2.2. Description of BcePred Server

The web-based server allows prediction of linear B-cell epitope using
physico-chemical properties of amino acids. The common gateway interface
(CGI) script for these servers are written using PERL version 5.03. These
servers are installed on a Sun Server (420E) under a UNIX (Solaris 7)
environment. Users can enter the primary amino acid sequence for prediction
using file uploading or cut-and-paste options. The results provide summarized
information about the query sequence and prediction.
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Fig. 1. The display of BcePred server (A) submission form; (B) graphical output
(sequences 1–60). Solid line represents “hydrophilicity,” round dot line represents
“turns,” sqaure dot represents “surface,” dashed line represents “flexibility,” dash dotted
line represents “polar,” long dashed line represents “accessibility,” long dash dotted
line represents “antigenic,” and long dash dot dotted line represents “combined.”
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The home page of BcePred server is available at http://www.imtech.res.in/
raghava/bcepred/. The available menus are home, submission form, help page,
output format, algorithm, and team. The submission form has been shown
in Fig. 1A. The help page describes the usage of the server, and the output
format explains the interpretation of the output format. The algorithms used in
developing the methods based on physico-chemical properties were explained
in detail in algorithm menu.

2.2.1. Steps to Follow for Using the Submission Form of BcePred Server

1. Enter a name for the sequence (optional).
2. Enter the sequence in the sequence window (with no header line) or give a file

name (file uploading).
3. The sequence must be written using the one-letter amino acid code: “acdefghiklm-

npqrstvwy” or “ACDEFGHIKLMNPQRSTVWY.” Other letters will be converted
to “X” and treated as unknown amino acids. Other characters, such as whitespace
and numbers, will simply be ignored.

4. Change the threshold [–3 to +3]: Default thresholds for different parameters are
selected based on the best sensitivity and specificity obtained (see Note 1).

5. Select the physio-chemical properties: Users can select any physico-chemical
properties such as hydrophilicity or flexibility or accessibility or turns or exposed
surface or polarity or antegenic propensity or combined methods (All). For multiple
selection, use Ctrl key (see Note 2).

6. Press the “Submit sequence” button.
7. A WWW page will return the results when the prediction is ready. Response time

depends on system load.

2.2.2. BcePred Server Output

It presents the results in graphical, tabular frame, and overlap display.

2.2.2.1. Graphical Format

An example of graphical output of BcePred has been shown in Fig. 1B.
In case of graphical frame, server plots the residue properties along protein
backbone, which assist the users in rapid visualization of B-cell epitope on
protein. The peak of the amino acid residue segment above the threshold value
is considered as predicted B-cell epitope.

2.2.2.2. Tabular Display

The tabular output is in the form of a table, which will give the normalized
score of the selected properties with the corresponding amino acid residue
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of a protein along with the maximum, minimum, and average values of the
combined methods selected.

2.2.2.3. Overlap Display

In overlap display, consensus prediction of two or more physico-chemical
properties are displayed. Predicted epitope regions are shown in blue color.

2.3. Description of ABCpred Server

The web-based server allows prediction of linear B-cell epitope using
artificial neural network. ABCpred has been trained on B-cell epitopes obtained
from Bcipep database (10) and will therefore presumably have better perfor-
mance for prediction of B-cell epitope of an antigen (11). This server can predict
continuous (linear) B-cell epitopes. The CGI script for these servers are written
using PERL version 5.03. These servers are installed on a Sun Server (420E)
under a UNIX (Solaris 7) environment. Users can enter the primary amino acid
sequence for prediction using file uploading or cut-and-paste options.

The home page of ABCpred server is available at
http://www.imtech.res.in/raghava/abcpred/. The available menus are home,
submission form, help page, method, and team. The submission page has been
shown in Fig. 2 A. The help menu explains the usage of the submission form,
and method menu describes the artificial neural network (recurrent neural
network) (12) based on which the server was developed.

2.3.1. Steps to Follow for Using the Submission Form of BcePred Server

1. Enter a name for the sequence (optional).
2. Enter the sequence in the sequence window (with no header line) or give a file

name (file uploading).
3. The sequence must be written using the one-letter amino acid code: “acdefghiklm-

npqrstvwy” or “ACDEFGHIKLMNPQRSTVWY.”. Other letters will be converted
to “X” and treated as unknown amino acids. Other characters, such as whitespace
and numbers, will simply be ignored.

4. Change the threshold [+0�1 to +1�0]: Users can select threhold value from 0.1 to
1. Default threshold is the optimum value (see Note 3).

5. Users can select the window length (10, 12, 14, 16, 18, 20); default length is 16
(see Note 4).

6. Users can can select overlapping filter on or off (see Note 5).
7. Press the “Submit sequence” button.
8. A WWW page will return the results when the prediction is ready. Response time

depends on system load.
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Fig. 2. Screenshot of ABCpred (A) submission form where user can input their
antigen sequence and can select appropriate threshold and window length; (B) output in
tabular format where epitope sequence (rankwise in first column), their start position,
and score are shown in column 2 and 3 respectively. The predicted B-cell epitopes are
ranked according to their score obtained by trained recurrent neural network. Higher
score of the peptide means the higher probability to be as epitope. All the peptides
shown here are above the threshold value chosen. (C) Output in graphical format.
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2.3.2. ABCpred Server Output

It presents the result in tabular frame and overlap display.

2.3.2.1. Tabular Display

In case of tabular frame, the server ranked epitopes based on the score
obtained from the trained recurrent neural network. An example of tabular
frame output has been shown in Fig. 2B. The higher score values of the peptides
indicates the higher probability to be as epitope.

2.3.2.2. Overlap Display

In overlap display, predicted epitopes were aligned (see Fig. 2C).
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Notes
1. The default values are the optmized value set at each physico-chemical properties.

For hydrophilicity and accesibility thereshold value is 2, flexibility and turns
threshold value is 1.9, polarity is 2.3, exposed surface is 2.4, antigenic propensity
is 1.8, and combined (flexibility + hydrophilicity + polarity + exposed surface) is
2.38. Increase in the threshold results in better specificity, but worse sensitivity.

2. Users can select more than one physico-chemical properties by pressing Ctrl key.
This option will allow users to select consensus epitope predicted by more than one
physico-chemical scale.

3. Default threshold is 0.5. An increase in the threshold results in better specificity,
but worse sensitivity. Only those peptides having score greater than threshold will
be shown in the output result.

4. By using default length 16, high sensitivity was observed at low false positive.
5. Overlapping filter allows to minimize the output result of overlapping predicted

peptides.
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HistoCheck
Evaluating Structural and Functional MHC Similarities

David S. DeLuca and Rainer Blasczyk

Summary

The HistoCheck webtool provides clinicians and researchers with a way of visualizing and
understanding the structural differences among related major histocompatibility complex (MHC)
molecules. In the clinical setting, human leukocyte antigen (HLA) matching of hematopoietic
stem cell donors and recipients is essential to minimize “graft versus host disease” (GvHD).
Because exact HLA matching is often not possible, it is important to understand which alleles
present the same structures (HLA–peptide complexes) to the T-cell receptor (TCR) despite having
different amino acid sequences. HistoCheck provides a summary of amino acid mismatches,
positions, and functions as well as 3-dimensional (3D) visualizations. In this chapter, we describe
how HistoCheck is used and offer advice in interpreting the query results

Key Words: Histocheck; HLA; MHC; class I; class II; peptide; binding; GvHD; donor; stem
cell transplantation; matching; T-cell receptor

1. Introduction
The collection of genes known as the major histocompatibility complex

(MHC) was discovered during studies initiated by J. Dausset, R. Payne and
J. J. van Rood, which attempted to describe a genetically inherited system of
alloantigens (antigens resulting from genetic discrepancies during transplan-
tation) in the 1950s (1–3). During the early 1960s, multi-transfused patients
and parous women were shown to often have circulating antibodies against
alloantigens, now known to be encoded by the human form of MHC—human
leukocyte antigen (HLA). Consequently, anti-HLA antibody screening is a
standard practice when matching organ donors and recipients. Later, it became
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clear that MHC-derived proteins restrict the specificity of the antigen receptor
expressed on the surface of T lymphocytes and thus play a major role in the
regulation of the immune response (4).

In the context of organ transplantation between non–HLA-identical donors
and recipients, the recipient’s T cells identify the donor’s HLA proteins as
foreign and initialize an immune response against the transplant. Consequently,
the survival rate among recipients of HLA-matched organs is significantly
higher than when mismatches are present (5,6).

HLA matching for organ donors and recipients is complicated by HLA’s
high rate of polymorphism. The latest release of the IMGT/HLA database
contains 2,088 alleles (7). Exact matching across multiple HLA loci (e.g.,
HLA-A, HLA-B, HLA-C, and HLA-DRB1) is very difficult. For kidney, heart,
cornea, and pancreas transplantations, “low-resolution” matching is used—
HLA alleles are only required to belong to the same serological group.
For hematopoietic stem cell transplantations during leukemia therapy, “high-
resolution” matching is required; patient and recipient alleles are required to
produce the same protein sequence. After total body irradiation for elimi-
nating malignant hematopoietic cells, leukemia patients need to receive a new
hematopoietic and immune system through stem cell transplantation. From the
perspective of the donor’s immune cells, the recipient’s entire body is foreign,
which leads to the so-called graft versus host disease (GvHD).

The likelihood of finding a high-resolution match for stem cell transplan-
tation is low, and therefore, clinicians often seek a “next-best” match. This
requires an understanding of which amino acid differences are not expected to
result in a functional change to the HLA protein. Here, the selective binding
of HLA to short peptide sequences, as well as the T-cell receptor (TCR), is of
the greatest interest. Amino acid differences in regions of the protein that do
not play a role in peptide or TCR binding could be acceptable between stem
cell donor and recipient.

The peptide binding groove is encoded by exons 2 and 3 for class I HLA
and exon 2 for class II HLA. The binding groove is formed by a beta-sheet
“floor” with two alpha-helical “walls.” Peptides bind by squeezing in between
the alpha helices, typically deeply anchored at the second amino acid from the
N terminus, as well as the C-terminal position. The TCR contacts the binding
groove from above, interacting with the surface amino acids of the alpha helices
and peptide (8).

HistoCheck (http://www.histocheck.org) is an online tool which helps clini-
cians and researchers visualize the amino acid substitutions of HLA alleles
so that they can make informed judgments about their functional similarity.
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HistoCheck provides crystallography-based 3-dimensional (3D) visualizations
of the allelic mismatches by highlighting amino acids substitution positions.
The user is provided with dissimilarity scores (DSSs) for the amino acids
involved as well as an over-all DSS for the two alleles (9).

2. Implementation
HistoCheck is written in Java, runs on a Tomcat application server,

utilizes servlets, Java server pages, and a MySQL database. The HLA alleles
and their sequences are updated regularly via the IMGT/HLA database:
ftp://ftp.ebi.ac.uk/pub/databased/imgy/mhc/hla/ (7).

2.1. Three-Dimensional Visualization

GIF images of the HLA structures with highlighted mismatches are generated
on a linux server using RasMol version 2.7.1.1. A description of RasMol
script commands can be found in the University of Massachusetts web
server http://www.umass.edu/microbio/rasmol/distrib/rasman.htm. Chime can
be integrated into the HTML of a website using the EMBED tag. Here is an
example:

<embed src="PDB_FILE_NAME.pdb" bgcolor=black display3d=
cartoon color3d=chain height="590" width ="600" startspin="false"
script="script SCRIPT_NAME.spt;">

Commands used in the ∗.spt file correspond largely with standard RasMol
commands.

2.2. The DSS Algorithm

In addition to providing information on the specific amino acid substitu-
tions involved between two HLA alleles, HistoCheck generates a DSS, which
attempts to quantify the overall functional differences between the two alleles
(see Note 1) (10). The score is based on the Risler substitution matrix as well as
data on the function of specific amino acids positions (i.e., their role in peptide
binding or TCR interaction) (see Note 2) (11). The score is generated by

1. summing the Risler scores across all mismatches,
2. dividing this score by 100,
3. adding a penalty of 1 for each mismatch that occurs on a position that either interacts

with the TCR or the peptide, or both.

An example calculation is given in Table 1.
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Table 1
Calculating the dissimilarity score for A∗2402 and A∗2304

Position Mismatch Function Penalty Risler score

144 Lysine → Glutamine – 13
151 Histidine → Arginine TCR +1 64
156 Glutamine → Leucine PEP +1 27
166 Aspartic acid → Glutamic acid TCR +1 30
167 Glycine → Tryptophan TCR+PEP +1 87

Total 4 221
Divide Risler scores by 100 221/100 = 2�21

Dissimilarity score 4+2�21 = 6�21

PEP, Peptide contact site; TCR, T-cell receptor.
The dissimilarity score is based on the Risler scores of mismatched amino acids combined

with penalties for positions which interact with the TCR or peptide. Note that although position
157 is involved in both TCR contact and peptide binding, the penalty is only counted once.

3. Application
HistoCheck can be accessed online at http://histocheck.org using any

javascript-enabled browser. Although HistoCheck is available free of charge,
first-time users are required to register for a user name and password, because
the developers are interested in what kinds of medical and research institutes
find HistoCheck userful.

3.1. Comparing a Patient’s HLA to Specific Donor HLA

After signing in to HistoCheck, the user is presented with a query form
(Fig. 1). The first option is the type of display to be used in showing the 3D
structure of HLA. Chime is a web-browser plug-in that presents molecules
interactively in 3D, allowing the user to rotate the molecule and choose between
a variety of display options. Alternatively, a still GIF image can be generated,
which shows the alleles’ 3D structure, but is not interactive.

Next, the user may select one of the following HLA loci: A, B, Cw, DRB1,
DRB3, DRB4, DRB5, DQA1, DQB1, DPA1, and DPB1. The specific alleles
for donor and recipient can then be specified. Two donors may be specified,
for a side-by-side comparison.

The resulting webpage shows a list of amino acid mismatches between
donor and recipient (Fig. 2). For each mismatch, the domain, exon, pocket,
and amino acid position are displayed (see Note 3). To help understand the
significance of each mismatch, additional information is given: the position’s
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Fig. 1. The query page for the HistoCheck website. The user may choose display
options and human leukocyte antigen (HLA) alleles for structural comparison. Patient
alleles can be compared directly with donor candidates with the “Get Score” button.
Alternatively, all the alleles of a locus can be ranked by similarity to the patient’s allele
by clicking the “Find best match” button.

role in binding the peptide and/or TCR, as well as the Risler score for the two
amino acids involved (see Note 4). The combination of functional significance
of the position (TCR binding/peptide binding), and the extent of biophysical
dissimilarity between the amino acids, is the basis for the DSS (see Note 5).
The summary table lists the total number of mismatches, the affected pockets,
total number of mismatches that affect peptide binding, the total number of
mismatched positions that interact with the TCR, and the overall DSS.

Underneath the mismatch tables, the HLA mismatches are displayed visually
either as a GIF image or in an interactive Chime window. The mismatched
positions are highlighted yellow. For class I HLA, the structure is based up
HLA-A∗0201 in complex with a decameric peptide from Hepatitis B nucleo-
capsid protein. The �1� �2, and �3 domains are displayed in blue. The �1 and
�2 domains form the peptide binding groove, which also interacts with the TCR.
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The �2-microglobulin domain is shown in green. A decamer peptide is shown
bound to the protein in red. If class II alleles were selected, the 3D structure
is based on crystallographic data from HLA-DRA with HLA-DRB1∗0101. The
�1 and �2 domains of DRB1 are shown in dark blue. The �1 and �2 domains
of DRA are shown in turquoise. The bound 13-mer peptide is shown in green.
The �1 and �1 domains form the peptide binding groove. Although class II
HLA proteins are heterodimers, the user selects only one gene at a time, for
simplicity. In this case, only the mismatches for the protein of the selected gene
are displayed. Because HLA-DRA, encoding for the alpha chain of the various
DR heterodimers, is not polymorphic, it is not offered in the list of genes.

If the Chime display option was selected, the user can rotate the molecule
and zoom in on particularly interesting locations. Chime also provides various
display options. The default option is “cartoons,” which allows one to quickly
orient and locate secondary, tertiary, and quaternary structures. Other options,
such as wireframe, ball and stick, and space-fill can be used for more detail,
once the major landmarks have been identified.

A large GIF image or Chime representation can be obtained by clicking the
“Big GIF” or “Big Chime” links. The “RasMol Script” link provides an rsm
file, which contains the atomic coordinate information from the standard pdb
format, as well as commands which orient the HLA molecule and highlight the
mismatches. The rsm files can be downloaded and viewed locally using the
RasMol viewer, RasTop 2.0.

3.2. Ranking Alleles by their Similarity to a Patient’s HLA

HistoCheck can also be used to find the most similar variants of an allele.
The procedure is almost identical to that described in Section 3.1. However,
after selecting the donor’s allele on the query page, the user may also click
the “Find Best Match” button instead of the “Get Score” button. In this case,
all of the alleles of the given locus are considered and ranked by ascending
DSS (i.e., the most similar alleles are at the top of the list). The ordered list
of alleles appears in the right frame, and the mismatch result page for the best
match is displayed in the center frame.

For example, if HLA-A∗0201 is chosen as the donor’s allele, a report
comparing A∗0201 with A∗0209 appears in the center frame. Because A∗0201
and A∗0209 have no amino acid differences in the key domains (�1 and �2�, the
DSS is zero. These alleles are different at position 236 of the mature protein, but
this position is part of the �3 domain, which does not interact with the TCR or
peptide. Although no mismatches are reported, the footnote “Additional differ-
ences found outside key domains” as well as the 3D image with the highlighted
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Fig. 2. The results page from a HistoCheck query. Here, the user has chosen to
compare HLA-A∗0201 with A∗0210. Three amino acid differences were found at
positions 9, 99, and 107. Positions 9 and 99 are involved in peptide binding. The
SSM score quantifies the functional differences of these alleles. In the crystallographic
structure of HLA bound to a peptide, the three mismatch positions are highlighted.
Two mismatches can be seen on the beta-sheet, and one in a loop structure on the
lower right.

mismatch appears. In the ranking of the most similar alleles to A∗0201 on the
right, one can see that A∗0201 has a zero mismatch score with A∗0209, A∗0266,
and A∗0275. Clicking on the allele’s name in this list brings up the detailed
report for the comparison. Clicking on the fourth allele in the list, A∗0268, one
can see a single amino acid substitution: arginine to lysine. at position 157.
Although this position is in the �2 domain, it does not interact directly with
the peptide or the TCR and is therefore of low significance. Visual inspection
of the 3D structure shows that position 157 is part of the domain’s alpha helix,
but faces away from the peptide binding groove. Furthermore, arginine and
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lysine (both long and basic) are structurally very similar, as reflected by the
very low Risler score (3). It can be concluded that despite a mismatch in the
�2 domain, A∗0201 and A∗0268 can be expected to bind the same peptides and
appear identical to the TCR.

3.3. Interpretation of DSS

As described in Section 2.2, the DSS is based up the functional role of
the mismatched positions, as well as the structural similarity of the amino
acids involved. The example involving A∗0201 mentioned above describes
comparisons where it is quite clear that the amino acid differences are unlikely
to affect HLA function. The best matches are of course those with DSS of
zero, indicating that there are no differences in the key domains. Amino acid
substitutions which are in the key domains, but which are not involved in
peptide binding or contact with the TCR, are likely to be tolerable. Mismatches
in peptide or TCR-binding regions could only be expected to be tolerable
when the Risler score is very low (below 10). See (see Notes 1–3) for more
information on interpreting the DSS.

3.4. Chime Installation

Interactive protein viewers are useful tools for understanding protein structure.
Chime is a web-browser plug-in, allowing for integration into websites.
Chime works with Internet Explorer, Netscape, and FireFox. Downloading
Chime requires free registration at the MDL website. Good instructions
on downloading and installing Chime can be found at the University of
Massachusetts website http://www.umass.edu/microbio/chime/ getchime.htm..

Although the Chime installation is straightforward for all versions of Internet
Explorer, problems may arise when installing for the newest Netscape and
FireFox browsers. A trick for installing chime in these browsers is worth men-
tioning here. The instructions given below refer to MDL Chime version 6.2 SP6.

1. Install Chime normally for Internet Explorer.
2. Copy the npchime.dll file from the Internet Explorer plug-in folder (C:\Program

Files\Internet Explorer\plugins\�.
3. Paste the file into the plug-in folder of FireFox or Netscape. For FireFox the folder

is likely to be C:\Program Files\Mozilla Firefox\plugins\.
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Notes
1. This manuscript describes the functionality of HistoCheck at end of 2005. The next

version of HistoCheck will involve several improvements. New crystallographic
data are available, which have been re-analyzed to determine the functional roles
of HLA amino acid positions. This analysis includes locus-specific definitions for
TCR and peptide interactions. Furthermore, static correlations between certain HLA
mismatches and GvHD have been identified. These “special mismatches” will be
highlighted in HistoCheck’s mismatch report, and the reference papers will be
sighted.

2. Alternatives to the current DSS will be offered. The BLOSUM62 scoring matrix, for
example, has delivered improvements in the area of sequence alignments. Whether
this matrix is better than the Risler matrix for comparing HLA alleles has not been
determined. This question is complicated by the fact that such matrices are based
on the assumption that the rate of amino acid substitution among related proteins
is proportional to amino acid similarity. The HLA binding groove is an exception
to this rule because of the evolutionary pressure for diversity, driven by the need
to respond to rapidly mutating pathogens. For this reason, a dissimilarity algorithm
will be provided, which weighs the HLA positions according to the variability
analysis provided by Reche et al. (13).

3. A refreshing aspect of HistoCheck in the age of black-box-bioinformatics (i.e.,
artificial neural networks and hidden Markov models) is that the primary biological
data are provided to the user. These so-called “hard data” include the nucleic acid
and protein sequences that have been validated by numerous work groups and
are, in effect, irrefutable. The mismatched positions reported by HistoCheck are
primary data, and the user is left with the freedom to interpret them. Other aspects
of HistoCheck can be considered secondary data (also called “soft” or “semi-soft”
data). The crystallographically determined structures of HLA are models, whose
limitations should be recognized. In particular, the fluidity and elasticity of protein
structures are not represented in these models. It can be expected that the confor-
mation of loops, for example, differs greatly in aqueous versus crystal environments.
That said, comparison of many crystallographic HLA structures shows that the
protein backbone is remarkably conserved. Although “semi-soft,” crystallographic
models are extremely informative, concerning tertiary/quaternary protein structure,
using this data to draw conclusions about TCR interactions and peptide binding can
be considered secondary or even tertiary data.

4. Risler’s similarity scores are also soft data. The scores are based on the rate of
amino acid substitution among structurally similar proteins. HistoCheck’s DSS is
an attempt to summarize secondary data concerning amino acid substitutions. That
this score is highly theoretical and removed from primary data is indisputable. In
a preliminary analysis performed with more than 1,700 HLA class I mismatched
transplant pairs from the hematopoietic stem cell transplant component of the
13th International Histocompatibility Workshop (Effie Petersdorf, Fred Hutchinson
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Cancer Research Center, Seattle, WA), the DSS was not superior in predicting
the severity of GvHD compared to just counting the number of HLA class I
mismatches (unpublished data). Furthermore, a small preliminary study did not
show a correlation between the DSS and T-cell alloreactivity in vitro (12). Because
this study was performed in an allogeneic transplantation setting, in which non-
HLA differences (i.e., minor histocompatibility antigens) affected alloreactivity, it
is unclear to which extent non-HLA differences overshadowed HLA similarities.
To clarify this point, further studies involving autologous cells, modified to express
additional HLA proteins, are necessary.

5. HistoCheck’s DSS is an elementary mathematical model that represents a first step
in quantifying the structural differences between HLA alleles. HistoCheck users are
encouraged to study the primary data that this website provides, such as number
and location of amino acid substitutions, and to examine the 3D structures provided
in order to make informed conclusions about the similarity/dissimilarity of HLA
alleles.
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Predicting Virulence Factors of Immunological Interest

Sudipto Saha and Gajendra P. S. Raghava

Summary

In this chapter, three prediction servers used for predicting virulence factors, bacterial toxins,
and neurotoxins have been described. VICMpred server predicts the functional proteins of gram-
negative bacteria that include virulence factors, information molecule, cellular process, and
metabolism molecule. BTXpred server allows users to predict bacterial toxins, its release, and
further classification of exotoxins. NTXpred server allows prediction of neurotoxins and further
classifying them based on their function and source.

Key Words: Virulence factors; bacterial toxins; exotoxins; endotoxins; toxoid; toxin-
neutralizing antibodies; neurotoxins; vaccine

1. Introduction
Most of the proteins in an organism involve in cellular process, metabolism,

and information storage, the remaining can be classified under virulence factors
that allow the germs to establish themselves in the host. Virulence factors
include adhesions, toxins, and hemolytic molecules. VICMpred server predicts
the functional proteins of Gram-negative bacteria using amino acid patterns
and composition. The ability of the toxoid vaccine to induce toxin-neutralizing
antibodies has provided the basis for the use of therapeutic antitoxins and
immunoglobulins for the prophylaxis and treatment of diseases caused by
bacterial toxin. The discovery of an effective method to detoxify tetanus and
diphtheria toxins by formaldehyde treatment allowed the introduction of mass
immunization that led to almost complete elimination of both diseases from
developed countries. BTXpred server predicts bacterial toxins and classifying
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them based on release (exotoxins and endotoxins) and function as (i) activate
adenylate cyclase, (ii) activate guanylate cyclase, (iii) food poisioning, (iv)
neurotoxins, (v) macrophage cytotoxin, (vi) vacuolating cytotoxin, (vii) thiol
activated, and (viii) hemolysin. The knowledge of neurotoxins is very important
for the development of drugs against pain and epilepsy. A number of pharma
companies are working on the use of these neurotoxins for the development of
potent drugs. NTXpred server predicts neurotoxins and classifies them based
on source as (i) eubacteria (produced by genus Clostridium), (ii) cnidarians
(where cnidoblast organelles store and deliver toxins), (iii) molluscans (cone),
(iv) arthropods (mainly scorpion and spider), (v) chordates (snake) and on
function as (i) ion channel blockers, (ii) blockers of acetylcholine receptors,
(iii) inhibitors of neurotransmitter release through metalloproteolytic activity,
(iv) inhibitors of acetylcholine release with phospholipase A2 activity, and (v)
facilitators of acetylcholine release. Thus, identification of virulence factors is
crucial for vaccine and drug development.

2. Materials and Methods
2.1. Usage of Web Servers

The users are required to fill a request form available at
http://www.imtech.res.in/errors/noauth.html for using web servers developed
by raghava’s group (http://www.imtech.res.in/raghava/). The user name (e-mail
ID) and password are provided through e-mail. The old users can directly access
the database by providing the user name and password.

2.2. Description of VICMpred

The web-based server allows prediction of broad function of a protein
(e.g., virulence factors, information molecule, cellular process, and metabolism
molecule) from its amino acid sequences. The common gateway interface (CGI)
script for the server has been written using PERL version 5.03. The server has
been installed on a Sun Server (420E) under a UNIX (Solaris 7) environment.
Users can enter the primary amino acid sequence for prediction using file
uploading or cut-and-paste options. The server accepts the protein sequences in
any standard format such as EMBL, GCG, and FASTA or in plain text format.
Web servers use the readseq program to read the input sequences. The results
provide summarized information about the query sequence and prediction.

VICMperd is freely available at http:www.imtecg.res.in/raghava/vicmpred/
and mirror site available at http://bioinformatic.uams.edu/mirror/vicmpred/. The
available menus in VICMpred server are help page, submission, algorithm,
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references, developers, and contact. The help page describes the general infor-
mation and stepwise help to submit sequence in the submission page. The
submission menu links to the server submission form, shown in Fig. 1A.

2.2.1. Types of Prediction

The server allows the prediction on the basis of two different approaches:

1. Pattern based
2. Pattern based combined with amino acid composition and dipeptide composition

(see Note 1).

2.2.2. About VICMpred

The detailed information on methods used in developing the server is
available at algorithm menu. The output format of the server has been shown in
Fig. 1B (see Note 2). It is important in drug and vaccine point of view to select
virulence proteins from the pool of proteins or the proteome of an organism.

2.3. Description of BTXpred Server

The aim of BTXpred server is to predict bacterial toxins and its function
from primary amino acid sequence using SVM, HMM, and PSI-Blast. The CGI
script for the server has been written using PERL version 5.03. The server has
been installed on a Sun Server (420E) under a UNIX (Solaris 7) environment.
Users can enter the primary amino acid sequence for prediction using file
uploading or cut-and-paste options. The server accepts the protein sequences
in any standard format such as EMBL, GCG, and FASTA or in plain text
format. Web servers use the readseq program to read the input sequences.
The results provide summarized information about the query sequence and
prediction.

BTXpred server and related information is available from
http://www.imtech.res.in/raghava/btxpred. The mirror site of BTXpred server
is accessible from http:bioinformatics.uams.edu/mirror/btxpred/. The server
allows users to predict bacterial toxins, its release, and further classification
of exotoxins. The server provides the option of predicting toxins either on
the basis of amino acid or dipeptide composition-based SVM method (1) or
PSI-BLAST (2) and classifies exotoxins using HMM (3) and PSI-BLAST.
The server predicts bacterial toxins, classifies bacterial toxins into exotoxins
and endotoxins, and further classifies exotoxins into seven different functions
depending on their molecular targets (i) activate adenylate cyclase, (ii) activate
guanylate cyclase, (iii) food poisoning, (iv) neurotoxins, (v) macrophage
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(A)

(B)

Fig. 1. The snapshot of the (A) submission and (B) output format of VICMpred
server.
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cytotoxin, (vi) vacuolating cytotoxin, and (vii) thiol-activated cytotoxin. The
available menus in the server are submission form, help page, supplementary,
epitope prediction, and developers link. The submission menu links to the
submission form of the server as shown in Fig. 2A.

(A)

(B)

Fig. 2. The snapshot of the (A) submission and (B) output format of BTXpred server.
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(A)

(B)
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2.3.1. Types of Prediction

The server allows three types of prediction (see Note 3).

1. Bacterial toxin or non-toxin.
2. Types of toxin—endotoxin or exotoxin.
3. Function of exotoxins.

2.3.2. Different Approaches Provided by BTXpred

The server allows the prediction on the basis of three different approaches.

1. SVM (for toxin and types of toxin).
2. PSI-Blast (for toxin, types of toxin, and functions of exotoxins).
3. HMM (only for function of exotoxins).

2.3.3. About BTXpred Server

The help page describes the general information and stepwise help to submit
sequence in submission page. Additional information of this server is linked
to supplementary menu. The epitope prediction menu links to Bcepred server
(4) for prediction of B-cell epitope in the bacterial toxin protein. This will help
the users interested in generating antibodies against the toxin. The output of
the server provides summarized information about the query sequence and the
prediction. The snapshot of the output format has been shown in Fig. 2B.

2.4. Description of NTXpred Server

The aim of NTXpred server is to predict neurotoxins and its source and
probable function from primary amino acid sequence using SVM based on
composition and PSI-Blast. The CGI script for the server has been written
using PERL version 5.03. The server has been installed on a Sun Server (420E)
under a UNIX (Solaris 7) environment. Users can enter the primary amino
acid sequence for prediction using file uploading or cut-and-paste options. The
server accepts the protein sequences in any standard format such as EMBL,
GCG, and FASTA or in plain text format. Web servers use the readseq program
to read the input sequences. The results provide summarized information about
the query sequence and prediction.

The server and related information is available at http://www.imtech.res.in/
raghava/ntxpred and mirror site at http://bioinformatics.uams.edu/mirror/

�
Fig. 3. The snapshot of the (A) submission and (B) output format of NTXpred

server.
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ntxpred/. The server predicts neurotoxins, its source mainly eubacteria, cnidaria
(sea anemone), mollusca (cone), arthropoda (scorpion and spider) and chordata
(snake), probable function mainly the ion channel blockers, blockers of acetyl-
choline receptors, inhibitors acetylcholine release throughmetalloproteolytic
activity or through phospholipase A2 activity and facilitators acetylcholine
release and further sub-classification of ion channels blockers into calcium,
sodium, potassium, and chloride ion channels inhibitors. The available menus
in the server are submission form, help page, data set, algorithm, B-cell epitope
prediction, supplementary information, developers, and contact information.
The submission menu links to the submission form of the server as shown in
Fig. 3A.

2.4.1. Types of Prediction

The server allows four types of prediction.

1. Neurotoxins or non-toxin
2. Source of the neurotoxin
3. Function of the neurotoxin
4. Sub-classification of ion channel inhibitors

2.4.2. Different Approaches Provided by NTXpred

The server provides the prediction on the basis of five different approaches
(see Note 4).

1. SVM module based on amino acid composition.
2. SVM module based on amino acid composition and length.
3. SVM module based on dipeptide.
4. SVM module based on dipeptide and length.
5. PSI-Blast.

2.4.3. About NTXpred Server

The help page describes the general information and stepwise help to submit
sequence in the submission page. Additional information of this server is
linked to supplementary menu. The epitope prediction menu links to Bcepred
server (4) for prediction of B-cell epitope in the bacterial toxin protein.
The results provide summarized information about the query sequence and
prediction. The snapshot of the submission and output format is shown in
Fig. 3B.
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Notes
1. Combined approach of pattern based and composition of amino acid give higher

accuracy than pattern based alone.
2. Scores of four different classes are given in tabular form. The highest score achieved

by individual class is the predicted functional class.
3. For choosing types of prediction by BTXpred, SVM does not allow predicting

function of exotoxins, and PSI-BLAST allows all the three, but HMM allows only
prediction of function of exotoxins.

4. SVM module based on amino acid composition and length give higher accuracy in
predicting neurotoxins, source, and function.
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